Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 46, 2019 - Issue 7
1,350
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Monitoring of less-common residual elements in scrap feeds for EAF steelmaking

, , , , , , & show all
Pages 598-608 | Received 19 Mar 2019, Accepted 27 Mar 2019, Published online: 17 May 2019

References

  • Björkman B, Samuelsson C. Recycling of steel. Handbook of recycling. Luleå: Elsevier; 2014; p. 65–83.
  • Stephenson E. Effect of recycling on residuals, processing, and properties of carbon and low-alloy steels. Metall Trans A. 1983;14(2):343–353.
  • Houpert C, Lanteri V, Jolivet J, et al. Influence of tramp elements in the production of high quality steels using the scrap/electric arc furnace route. Révue de Métallurgie. 1997;94(11):1369–1384.
  • Noharet B, Zetterlund E, Tarasenko O, et al., editors. Spectroscopy-based photonic instrumentation for the manufacturing industry: contactless measurements of distances, temperatures, and chemical composition. Photonic instrumentation engineering. 2014: international society for optics and photonics.
  • Vallomy J. Adverse effects of tramp elements on steel processing and product. Ind Heating. 1985;52(6):34–38.
  • Yellishetty M, Mudd GM, Ranjith PG, et al. Environmental life-cycle comparisons of steel production and recycling: sustainability issues, problems and prospects. Environ Sci Policy. 2011;14(6):650–663.
  • Gesing AJ. Elemental analysis and chemical-composition-based material separation and blending. The minerals. Metals Mater Soc. 2007: 1099–1107.
  • Hou X, Jones BT. Inductively coupled plasma/optical emission spectrometry. Encycl Anal Chem. 2000;11:9468–9485.
  • Noll R, Bette H, Brysch A, et al. Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry. Spectrochim Acta Part B. 2001;56(6):637–649.
  • Ghosh S, Prasanna VL, Sowjanya B, et al. Inductively coupled plasma–optical emission spectroscopy: a review. Asian J Pharm Ana. 2013;3(1):24–33.
  • Dulski T. Trace elemental analysis of metals: methods and techniques. Pennsylvania: Routledge; 2017.
  • Cremers DA, Yueh FY, Singh JP, et al. Laser-induced breakdown spectroscopy, elemental analysis. Encycl Anal Chem Appl TheoryInstrum. 2006: 1–22.
  • Piorek S. Principles and applications of man-portable X-ray fluorescence spectrometry. TrAC, Trends Anal Chem. 1994;13(7):281–286.
  • Bernick M, Kalnicky D, Prince G, et al. Results of field-portable X-ray fluorescence analysis of metal contaminants in soil and sediment. J Hazard Mater. 1995;43(1-2):101–110.
  • Hou X, He Y, Jones BT. Recent advances in portable X-ray fluorescence spectrometry. Appl Spectrosc Rev. 2004;39(1):1–25.
  • Piorek S. Technology. Field-portable X-ray fluorescence spectrometry: past, present, and future. Field Anal Chem Technol. 1997;1(6):317–329.
  • Ida H, Kawai J. Identification of steel by X-ray fluorescence analysis with a pyroelectric X-ray generator. Anal Bioanal Chem. 2004;379(4):735–738.
  • Brooks L, Gaustad G, Gesing A, et al. Ferrous and non-ferrous recycling: challenges and potential technology solutions. Waste Manage. 2019;85:519–528.
  • Gaft M, Nagli L, Groisman Y, et al. Industrial online raw materials analyzer based on laser-induced breakdown spectroscopy. Appl Spectrosc. 2014;68(9):1004–1015.
  • Miziolek AW, Palleschi V, Schechter I. Laser induced breakdown spectroscopy. New York: Cambridge University Press; 2006.
  • Capuzzi S, Timelli G. Preparation and melting of scrap in aluminum recycling: a review. Metals (Basel). 2018;8(4):249.
  • Noll R, Fricke-Begemann C, Brunk M, et al. Laser-induced breakdown spectroscopy expands into industrial applications. Spectrochim Acta Part B. 2014;93:41–51.
  • Merk S, Scholz C, Florek S, et al. Increased identification rate of scrap metal using laser induced breakdown spectroscopy echelle spectra. Spectrochim Acta Part B. 2015;112:10–15.
  • Noll R, Bengtson A, Gurell J, et al. Inline elemental characterisation of scrap Charging for improved EAF charging control and internal scrap recycling (IPRO). Brussels: Publications Office; 2015.
  • Wienströer S, Delwig C, Fettweis H, et al. Sinter process optimisation by prompt gamma neutron activation analysis (PGNAA) based basicity control system storage medium presented at: ECIC 2011, 6th European Coke and Ironmaking Congress, METEC InSteelCon 2011, Düsseldorf, DE, Jun 27–Jul 1, 2011 Düsseldorf, DE, Jun 27–Jul 1, 2011 Düsseldorf Stahl-Zentrum 2011. p. 1–6.
  • Im H-J, Song K. Applications of prompt gamma ray neutron activation analysis: detection of illicit materials. Appl Spectrosc Rev. 2009;44(4):317–334.
  • Charbucinski J, Duran O, Freraut R, et al. The application of PGNAA borehole logging for copper grade estimation at Chuquicamata mine. Appl Radiat Isot. 2004;60(5):771–777.
  • Mannanal SJ, Dehnhardt S, Eickmeyer T, et al. On-line bulk composition analysis of steel scrap using PGNAA (SCRAP PROBE). Brussels: Publications Office; 2013.
  • Reuter M, Hudson C, Van Schaik A, et al. Metal recycling: opportunities, limits, infrastructure. A report of the working group on the global metal flows to the international resource panel. 2013.
  • Savov L, Volkova E, Janke D. Copper and tin in steel scrap recycling. Mater Geoenviron. 2003;50(3):627–640.
  • Daehn KE, Cabrera Serrenho A, Allwood JM, et al. How will copper contamination constrain future global steel recycling? Environ Sci Technol. 2017;51(11):6599–6606.
  • Filella M, Belzile N, Chen Y-W. Antimony in the environment: a review focused on natural waters: i. occurrence. Earth Sci Rev. 2002;57(1–2):125–176.
  • Rombach E, Friedrich B. Recycling of rare metals. Handbook of recycling. Aachen: Elsevier; 2014; p. 12–150.
  • Henckens M, Driessen P, Worrell E. How can we adapt to geological scarcity of antimony? Investigation of antimony’s substitutability and of other measures to achieve a sustainable use. Resour Conserv Recycl. 2016;108:54–62.
  • Carneiro RL, Molina JHA, Antoniassi B, et al. Essential aspects of lead-acid batteries and physical-chemical and thermodynamic principles of its operation. Revista Virtual De Quimica. 2017;9: 889–911.
  • Bannenberg N, Lachmund H, der Dillinger Hüttenwerke AG. Comparative assessment of LD converter and electric arc fumace steelmaking in terms of removal of undesirable trampelements’. Internat Reporl LA E. 1999;990:1999.
  • Bell S, Davis B, Javaid A, et al. Final report on effect of impurities in steel. Report. 2006.
  • Yin L, Sridhar S. Effects of residual elements arsenic, antimony, and tin on surface hot shortness. MetallMater Trans B. 2011;42(5):1031–1043.
  • Jenko M, Vodopivec F, Grabke H, et al. Influence of antimony on the texture and properties of 2% Si, 0.3% Al steel for non-oriented sheet. Le Journal de Physique IV. 1995;5(C7):C7-225–C7-231.
  • Melford D. The influence of residual and trace elements on hot shortness and high temperature embrittlement. Philos Trans Royal Soc A: Math, Phys Eng Sci. 1980;295(1413):89–103.
  • Brown T, Pitfield P. Tungsten. Critical metals handbook. Nottingham: British Geological Survey; 2014; p. 385–413.
  • Sverdrup HU, Olafsdottir AH, Ragnarsdottir KVJBE, et al. Modelling global wolfram mining, secondary extraction, supply, stocks-in-society, recycling, market price and resources, using the WORLD6 system dynamics model. Biophys Econ Resour Qual. 2017;2(3):11.
  • Leal-Ayala DR, Allwood JM, Petavratzi E, et al. Mapping the global flow of tungsten to identify key material efficiency and supply security opportunities. Resour Conserv Recycl. 2015;103:19–28.
  • Zeiler B, Schubert W-D, Barti A. Recycling of Tungsten - current share, economic limitations and future potential. ITIA Newsletter. 2018 May - 2018.
  • Lassner E, Schubert W-D. Properties, chemistry, technology of the element, alloys, and chemical compounds. Vienna: Vienna University of Technology; 1999; p. 124–125.
  • Pourret O, Faucon M-P. Cobalt. Encyclopedia of geochemistry: a comprehensive reference source on the chemistry of the earth. Beauvais Cedex: Springer International Publishing Switzerland; 2016; p. 1–3.
  • Roberts S, Gunn G. Cobalt. Critical metals handbook. Nottingham: British Geological Survey; 2014; p. 122–149.
  • Slack JF, Kimball BE, Shedd KB. Cobalt. US geological survey. Reston: U.S. Geological Survey; 2017.
  • Weight D. Cobalt. Ni-Co 2013. San Antonio: Springer; 2013; p. 25–52.
  • Froehlich P, Lorenz T, Martin G, et al. Valuable metals—recovery processes, current trends, and recycling strategies. Angew Chem, Int Ed. 2017;56(10):2544–2580.
  • Buchely M, Gutierrez J, Leon L, et al. The effect of microstructure on abrasive wear of hardfacing alloys. Wear. 2005;259(1-6):52–61.
  • Saikoff E, Andersson E, Bengtsson F, et al. Cobalt in high speed steels. Uppsala: Teknisk- naturvetenskaplig fakultet UTH-enheten; 2018.
  • Jakubéczyová D, Fáberová M. Mechanical properties and surface treatment PM cobalt high speed steels. Powder Metall Prog(Slovak Republic). 2002;2(3):188–197.
  • Helis L, Toda Y, Hara T, et al. Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants. Mater SciEng: A. 2009;510-511:88–94.
  • Group INS. World directory of nickel production facilities 2018, sample. 2018.
  • Nickel Institute. [cited 2019 07/01/2019]. Available from: https://www.nickelinstitute.org/.
  • Introduction to Stainless Steel International Stainless Steel Forum. [cited 2019 07/01/2019]. Available from: http://www.worldstainless.org/.
  • Coman V, Robotin B, Ilea P. Nickel recovery/removal from industrial wastes: a review. Resour Conserv Recycl. 2013;73:229–238.
  • Reck BK, Müller DB, Rostkowski K, et al. Anthropogenic nickel cycle: Insights into use, trade, and recycling. Environ Sci Technol. 2008;42(9):3394–3400.
  • McRea ME. Nickel. 2015 minerals yearbook: USGS. U.S. Geological Survey; 2018.
  • Nakajima K, Otsuka Y, Iwatsuki Y, et al. Global supply chain analysis of nickel: importance and possibility of controlling the resource logistics. Rev de MétallInt JMetall. 2014;111(6):339–346.
  • Akamatsu S, Senuma T, Takada Y, et al. Effect of nickel and tin additions on formation of liquid phase in copper bearing steels during high temperature oxidation. Mater Sci Technol. 1999;15(11):1301–1307.
  • Jiang Y, Xie C. Evaluation model of susceptibility to Cu hot shortness of Cu-containing LC steel. IOP conference series: materials science and engineering. IOP Publishing; 2017.
  • Mintz B, Abushosha R, Crowther DN. Influence of small additions of copper and niekel on hot ductility of steels. Mater Sci Technol. 1995;11(5):474–481.
  • Pyrzynska K. Determination of molybdenum in environmental samples. Anal Chim Acta. 2007;590(1):40–48.
  • Vemic M. Leaching and recovery of molybdenum, nickel and cobalt from metals recycling plants mineral sludges. Paris: Université Paris-Est; 2015.
  • Peiró LT, Méndez GV, Ayres RU. Material flow analysis of scarce metals: sources, functions, end-uses and aspects for future supply. Environ Sci Technol. 2013;47(6):2939–2947.
  • International Molybdenum Association. (2019). [cited 2019 Jan 9]. Available from: https://www.imoa.info/index.php.
  • Henckens M, Driessen P, Worrell E. Molybdenum resources: their depletion and safeguarding for future generations. Resour Conserv Recycl. 2018;134:61–69.
  • Junhua K, Lin Z, Bin G, et al. Influence of Mo content on microstructure and mechanical properties of high strength pipeline steel. Mater Des. 2004;25(8):723–728.
  • Kong J, Xie C. Effect of molybdenum on continuous cooling bainite transformation of low-carbon microalloyed steel. Mater Des. 2006;27(10):1169–1173.
  • Kim CK, Kim YC, Park JI, et al. Effects of alloying elements on microstructure, hardness, and fracture toughness of centrifugally cast high-speed steel rolls. Metall Mater Trans A. 2005;36(1):87–97.
  • EU Commission. Study on the review of the list of critical raw materials. Brussels: European Commission; 2017.
  • Ohno H, Matsubae K, Nakajima K, et al. Toward the efficient recycling of alloying elements from end of life vehicle steel scrap. Resour Conserv Recycl. 2015;100:11–20.
  • Reck BK, Chambon M, Hashimoto S, et al. Global stainless steel cycle exemplifies China’s rise to metal dominance. Environ Sci Technol. 2010;44(10):3940–3946.
  • Sahoo G, Deepa M, Singh B, et al. Hot ductility and hot-shortness of steel and measurement techniques: a review. J Metals Mater Mine. 2016;26(2):1–11.
  • LeMay I, Le May I, Schetky LM. Copper in iron and steel. New York: John Wiley & Sons; 1986.
  • Westbrook J. Problems with residual and additive elements and their control through specifications. Resour Recovery Conserv. 1980;4(4):369–393.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.