Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 47, 2020 - Issue 9
180
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Effect of cooling mode on the microstructure and mechanical properties of medium carbon steel after warm rolling

, , &
Pages 1022-1028 | Received 27 Jun 2019, Accepted 29 Aug 2019, Published online: 23 Sep 2019

References

  • Hashemi SG, Eghbali B. Evolution of high strength and ductile ultrafine grained dual phase superferrite low carbon V-Nb-Mo steel. Mater Sci Eng A. 2017;705:32–41. doi: 10.1016/j.msea.2017.07.094
  • Sameia J, Zhou LF, Kang JD, et al. Microstructural analysis of ductility and fracture in fine-grained and ultrafine-grained vanadium-added DP1300 steels. International Journal of Plasticity. 2019;117:58–70. doi: 10.1016/j.ijplas.2017.12.009
  • Chen MS, Zhou ZH, Lin YC, et al. Effects of annealing parameters on microstructural evolution of a typical nickel-based superalloy during annealing treatment. Mater Charact. 2018;141:212–222. doi: 10.1016/j.matchar.2018.04.056
  • Lv LF, Fu LM, Ahmad S, et al. Atomic-scale understanding of stress-induced phase transformation in cold-rolled Hf. Mater Sci Eng A. 2017;704:469–479. doi: 10.1016/j.msea.2017.07.089
  • Tang CL, Li H, Li SY. Effect of processing route on grain refinement in pure copper processed by equal channel angular extrusion. Trans Nonferr Met Soc China. 2016;26:1736–1744. doi: 10.1016/S1003-6326(16)64286-3
  • Tsuji N, Ito Y, Minamino Y. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr Mater. 2002;47:893–899. doi: 10.1016/S1359-6462(02)00282-8
  • Valiev RZ, Korznikov AV, Mulyukov RR. Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater Sci Eng A. 1993;168:141–148. doi: 10.1016/0921-5093(93)90717-S
  • Zhao LJ, Park N, Tian YZ, et al. Dynamic transformation mechanism for producing ultrafine grained steels. Adv Eng Mater. 2018;20:1–25.
  • Li Q, Wang TS, Jing TF, et al. Warm deformation behavior of quenched medium carbon steel and its effect on microstructure and mechanical properties. Mater Sci Eng A. 2009;515:38–42. doi: 10.1016/j.msea.2009.02.028
  • Wang TS, Li Z, Zhang B, et al. High tensile ductility and high strength in ultrafine-grained low-carbon steel. Mater Sci Eng A. 2010;527:2798–2801. doi: 10.1016/j.msea.2010.01.072
  • Storojeva L, Ponge D, Kaspar R, et al. Development of microstructure and text of medium carbon steel during heavy warm deformation. Acta Mater. 2004;52:2209–2220. doi: 10.1016/j.actamat.2004.01.024
  • Song R, Peng D, Raabe D. Improvement of the work hardening rate of ultrafine grained steels through second phase particles. Mater Sci Eng A. 2005;52:1075–1080.
  • Tsai SP, Tsai YT, Chen YW, et al. Precipitation behavior in bimodal ferrite grains in a low carbon Ti-V-bearing steel. Scr Mater. 2018;143:103–107. doi: 10.1016/j.scriptamat.2017.09.029
  • Lu L, You ZS, Lu K. Work hardening of polycrystalline Cu with nanoscale twins. Scr Mater. 2016;66:837–842. doi: 10.1016/j.scriptamat.2011.12.046
  • Torizuka S, Muramatsu E, Mury SVSN, et al. Microstructure evolution and strength-reduction in area balance of ultrafine-grained steel processed by warm caliber rolling. Scr Mater. 2006;55:751–754. doi: 10.1016/j.scriptamat.2006.03.067
  • Zhang MD, Hu J, Cao WQ, et al. Microstructure and mechanical properties of high strength and high toughness micro-laminated dual phase steels. Mater Sci Eng A. 2014;618:168–175. doi: 10.1016/j.msea.2014.08.073
  • Huang MX, He BB. Alloy design by dislocation engineering. J Mater Sci Technol. 2018;34:417–420. doi: 10.1016/j.jmst.2017.11.045
  • Ning JL, Feng YL, Wan MM, et al. Dependence of tensile properties on microstructural features of bimodal-sized ferrite/cementite steels. J Iron Steel Res (International). 2017;24:67–76. doi: 10.1016/S1006-706X(17)30010-9
  • Zhang K, Liu P, Li W, et al. Enhancement of the strength and ductility of martensitic steels by carbon. Mater Sci Eng A. 2018;716:87–91. doi: 10.1016/j.msea.2018.01.012
  • Xiong T, Zheng SJ, Zhou YT, et al. Enhancing strength and thermal stability of TWIP steels with a heterogeneous structure. Mater Sci Eng A. 2018;720:231–237. doi: 10.1016/j.msea.2018.02.003
  • Cooman BCD, Estrin Y, Kim SK. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018;142:283–362. doi: 10.1016/j.actamat.2017.06.046
  • Song R, Peng D, Raabe D, et al. Microstructure and crystallographic texture of an ultrafine grained C-Mn steel and their evolution during warm deformation and annealing. Acta Mater. 2005;53:845–858. doi: 10.1016/j.actamat.2004.10.051
  • Zheng CS, Li LF. Mechanical behavior of ultrafine-grained eutectoid steel containing nano-cementite particles. Mater Sci Eng A. 2018;713:35–42. doi: 10.1016/j.msea.2017.12.051
  • Ning JL, Zhang YT, Huang L, et al. Stabilized uniform deformation in a high-strength ferrite-cementite steel with multiscale lamellar structure. Mater Des. 2017;120:280–290. doi: 10.1016/j.matdes.2017.02.031
  • Prasad C, Bhuyan P, Kaithwas C, et al. Microstructure engineering by dispersing nano-spheroid cementite in ultrafine-grained ferrite and its implications on strength-ductility relationship in high carbon steel. Mater Des. 2018;139:324–335. doi: 10.1016/j.matdes.2017.11.019
  • Rastegari H, Kermanpur A, Najafizadeh A, et al. Determination of processing maps for the warm working of vanadium microalloyed eutectoid steels. Mater Sci Eng A. 2016;658:167–175. doi: 10.1016/j.msea.2016.01.088
  • Rastegari H, Kermanpur A, Najafizadeh A, et al. Warm deformation processing maps for the plain eutectoid steelsl. J Alloys Compd. 2015;626:136–144. doi: 10.1016/j.jallcom.2014.11.170
  • Sun JJ, Lian FL, Liu HJ, et al. Microstructure of warm rolling and pearlitic transformation of ultrafine-grained GCr15 steel. Mater Charact. 2014;95:291–298. doi: 10.1016/j.matchar.2014.07.011
  • Song R, Ponge D, Raabe D, et al. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater Sci Eng A. 2006;441:1–17. doi: 10.1016/j.msea.2006.08.095
  • Zebarjadi Sar M, Barella S, Gruttadauria A, et al. Impact of warm rolling process parameters on crystallographic textures, microstructure and mechanical properties of low-carbon boron-bearing steels. Metals (Basel). 2018;8:927–941. doi: 10.3390/met8110927
  • Zheng CS, Li LF. Effect of microstructure on mechanical behavior for eutectoid steel with ultrafine- or fine-grained ferrite/cementite structure. Mater Sci Eng A. 2017;688:83–91. doi: 10.1016/j.msea.2017.01.082
  • Gao M, Cao XF, Ding DW, et al. Decoding flow unit evolution upon annealing from fracture morphology in metallic glasses. Mater Sci Eng A. 2017;686:65–72. doi: 10.1016/j.msea.2016.12.130
  • Tan SL, Yang K, Ding YN, et al. Fracture morphologies of a hot stamped steel and comparisons with several sheet metals. J Iron Steel Res (International). 2017;24:634–640. doi: 10.1016/S1006-706X(17)30095-X
  • Lin YC, Jiang X, Shuai CJ, et al. Effects of initial microstructures on hot tensile deformation behaviors and fracture characteristics of Ti-6Al-4V alloy. Mater Sci Eng A. 2018;711:293–302. doi: 10.1016/j.msea.2017.11.044
  • Jia NN, Guo K, He YM, et al. A thermomechanical process to achieve mechanical properties comparable to those of quenched-tempered medium-C steel. Mater Sci Eng A. 2017;700:175–182. doi: 10.1016/j.msea.2017.06.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.