Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 46, 2019 - Issue 10: STEEL WORLD ISSUE
441
Views
15
CrossRef citations to date
0
Altmetric
Articles

Status, technological progress, and development directions of the ironmaking industry in China

, , , , , & show all
Pages 937-941 | Received 14 Aug 2019, Accepted 19 Nov 2019, Published online: 02 Dec 2019

References

  • Mousa EA, Babich A, Senk D. Enhancement of iron ore sinter reducibility through coke oven gas injection into the modern blast furnace. ISIJ Int. 2013;53(8):1372–1380. doi: 10.2355/isijinternational.53.1372
  • de Castro JA, Nath N, Franca AB, et al. Analysis by multiphase multicomponent model of iron ore sintering based on alternative steelworks gaseous fuels. Ironmak Steelmak. 2012;39(8):605–613. doi: 10.1179/1743281212Y.0000000008
  • Dong H, Yang YW, Jia FR, et al. Thermodynamic analysis of efficient recovery and utilisation of waste heat resources during sintering process. Int J Exergy. 2013;12(4):552–569. doi: 10.1504/IJEX.2013.055079
  • Ren S, Li SL, Su ZH, et al. Poisoning effects of KCl and As2O3 on selective catalytic reduction of NO with NH3 over Mn-Ce/AC catalysts at low temperature. Chem Eng J. 2018;351:540–547. doi: 10.1016/j.cej.2018.06.085
  • Ren S, Yang J, Zhang TS, et al. Role of cerium in improving NO reduction with NH3 over Mn–Ce/ASC catalyst in low-temperature flue gas. Chem Eng Res Des. 2018;133:1–10. doi: 10.1016/j.cherd.2018.02.041
  • Wang ZY, Zhang JL, Jiao KX, et al. Effect of pre-oxidation on the kinetics of reduction of ironsand. J Alloy Compd. 2017;729:874–883. doi: 10.1016/j.jallcom.2017.08.293
  • Luo YH, Zhu DQ, Pan J, et al. Utilisation of semi-coke as by-product derived from coal-based direct reduction process in iron ore sintering. Ironmak Steelmak. 2016;43(8):628–634. doi: 10.1080/03019233.2016.1152001
  • Tang QL, Zhang JL, Zhong JB, et al. Utilization of semi-coke in iron making technologies in China. Metall Res Technol. 2017;114(4):403–412. doi: 10.1051/metal/2017031
  • Steer JM, Marsh R, Greenslade M, et al. Opportunities to improve the utilisation of granulated coals for blast furnace injection. Fuel. 2015;151:40–49. doi: 10.1016/j.fuel.2014.12.060
  • Song TF, Zhang JL, Wang GW, et al. Influence mechanism of lignite and lignite semi-coke addition on drum strength of coke. ISIJ Int. 2018;58(2):253–258. doi: 10.2355/isijinternational.ISIJINT-2017-447
  • Kumar PP, Barman S, Ranjan M, et al. Maximisation of non-coking coals in coke production from non-recovery coke ovens. Ironmak Steelmak. 2008;35(1):33–37. doi: 10.1179/174328107X174762
  • Shkoller MB. Promising raw materials for the production of pulverized-coal fuel. Metallurgist. 2011;55(3–4):143–148. doi: 10.1007/s11015-011-9404-8
  • Wang ZY, Zhang JL, An G, et al. Analysis on the oversize blast furnace desulfurization and a sulfide capacity prediction model based on congregated electron phase. Metall Mater Trans B. 2016;47(1):127–134. doi: 10.1007/s11663-015-0462-3
  • Kardas E. The analysis of quality of ferrous burden materials and its effect on the parameters of blast furnace process. Metalurgija. 2013;52(2):149–152.
  • Ma JF, Wang GW, Zhang JL, et al. Reduction behavior and kinetics of vanadium–titanium sinters under high potential oxygen enriched pulverized coal injection. Int J Min Met Mater. 2017;24(5):493–503. doi: 10.1007/s12613-017-1430-5
  • Wang ZY, Zhang JL, Xing XD, et al. Phase transitions and atomic-scale migration during the preoxidation of a titania/ferrous oxide solution. JOM. 2016;68(2):656–667. doi: 10.1007/s11837-015-1678-z
  • Wang ZY, Zhang JL, Jiao KX, et al. Effects of pre-reduction degree of irons and on slag properties in melting separation process. Steel Res Int. 2018;89(3. doi: 10.1002/srin.201700363
  • Ren S, Zhang JL, Liu WJ, et al. An integrated evaluation system of anthracite, meager-lean coal and bituminous coal co-injection for a blast furnace. Energy Source Part A. 2013;35(22):2123–2131. doi: 10.1080/15567036.2011.645995
  • Du SW, Chen WH, Lucas JA. Pulverized coal burnout in blast furnace simulated by a drop tube furnace. Energy. 2010;35(2):576–581. doi: 10.1016/j.energy.2009.10.028
  • Ma JF, Wan L, Jia GL, et al. Discuss on operation of large-scale BF with low fuel rate. J Iron Steel Res Int. 2009;16:619–623.
  • Dai FQ, Huang SY, Li SH, et al. Study of a ceramic burner for shaftless stoves. Int J Min Met Mater. 2009;16(2):149–153. doi: 10.1016/S1674-4799(09)60025-X
  • Zhao HB, Huo SF, Cheng SS. Study on the early warning mechanism for the security of blast furnace hearths. Int J Min Met Mater. 2013;20(4):345–353. doi: 10.1007/s12613-013-0733-4
  • Jiao KX, Zhang JL, Liu ZJ, et al. Formation mechanism of the graphite-rich protective layer in blast furnace hearths. Int J Min Met Mater. 2016;23(1):16–24. doi: 10.1007/s12613-016-1206-3
  • Cheng SS, Yang TJ, Xue QG, et al. Optimum design and layout of the cooling apparatus for long compaignship blast furnace. J Univ Sci Technol B. 2003;10(4):24–28.
  • Li Z, Wen Z, Su FY. Analysis of efficient operating cycles for blast-furnace stoves. Metallurgist. 2013;56(11–12):799–806. doi: 10.1007/s11015-013-9654-8
  • Zhang FM, Mao QW, Mei CH, et al. Dome combustion hot blast stove for huge blast furnace. J Iron Steel Res Int. 2012;19(9):1–7. doi: 10.1016/S1006-706X(13)60001-1
  • Zhang SC, Guo HZ, Liu XJ, et al. Numerical calculation of flow and heat transfer process in the new-type external combustion swirl-flowing hot stove. J Univ Sci Technol B. 2003;10(5):31–34.
  • Wang ZY, Zhang JL, Xing XD, et al. Congregated electron phase and Wagner model applied in titanium distribution behavior in low-titanium slag. T Nonferr Metal Soc. 2015;25(5):1640–1647. doi: 10.1016/S1003-6326(15)63769-4
  • Wang HT, Zhao W, Chu MS, et al. Current status and development trends of innovative blast furnace ironmaking technologies aimed to environmental harmony and operation intellectualization. J Iron Steel Res Int. 2017;24(8):751–769. doi: 10.1016/S1006-706X(17)30115-2
  • Boscolo M, Padoano E. Monitoring of particulate emissions to assess the outcomes of retrofitting measures at an ironmaking plant. ISIJ Int. 2011;51(9):1553–1560. doi: 10.2355/isijinternational.51.1553
  • Zhou P, Guo DW, Wang H, et al. Data-driven robust M-LS-SVR-based NARX modeling for estimation and control of molten iron quality indices in blast furnace ironmaking. IEEE Tran Neur Netw Learn. 2018;29(9):4007–4021. doi: 10.1109/TNNLS.2017.2749412
  • Tunckaya Y. Performance assessment of permeability index prediction in an ironmaking process via soft computing techniques. Proc Inst Mech Eng E. 2017;231(6):1101–1113. doi: 10.1177/0954408916654199

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.