Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 48, 2021 - Issue 3
256
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Research on twin-roll strip cast-rolling based on a new sectional roll surface heat transfer boundary condition

, , , & ORCID Icon
Pages 254-262 | Received 16 Feb 2020, Accepted 25 Apr 2020, Published online: 08 Jun 2020

References

  • Rodrigues C, Ludwig A, Kharicha A, et al. Modeling of the twin-roll casting process: transition from casting to rolling. Trans Indian Inst Met 2018;71(11):2645–2649. doi: 10.1007/s12666-018-1423-8
  • Grydin O, Stolbchenko M, Bauer M, et al. Asymmetric twin-roll casting of an Al-Mg-Si-Alloy. Mater Sci Forum. 2018;918:48–53. doi: 10.4028/www.scientific.net/MSF.918.48
  • Hussain Z, Nasir LMM, Anasyida AS, et al. Solidification of aluminum copper alloy during twin roll strip casting. Adv Mater Res 2014;1024:231–234. doi: 10.4028/www.scientific.net/AMR.1024.231
  • Heo JY, Baek MS, Euh KJ, et al. Microstructure, tensile and fatigue properties of Al–5 wt.%Mg alloy manufactured by twin roll strip casting. Met Mater Int 2018;24(5):992–1001. doi: 10.1007/s12540-018-0123-6
  • Al-Helal K, Chang I, Patel JB, et al. Thermomechanical treatment of high-Shear melt-conditioned twin-roll cast strip of recycled AA5754 Alloy. JOM. 2018;71(6):2018–2024. doi: 10.1007/s11837-018-3190-8
  • Lee SW. Mathematical modelling of a twin-roll strip casting process with turbulent flow. Korean J Chem Eng 1992;9(4):199–205. doi: 10.1007/BF02705293
  • Launder BE, Sharma BI. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett Heat Mass Transfer. 1974;1(2):131–137. doi: 10.1016/0094-4548(74)90150-7
  • Kim WS, Kim DS, Kuznetsov AV. Simulation of coupled turbulent flow and heat transfer in the wedge-shaped pool of a twin-roll strip casting process. Int J Heat Mass Transfer. 2000;43(20):3811–3822. doi: 10.1016/S0017-9310(00)00013-2
  • Zhang XM, Jiang ZY, Yang LM, et al. Flow and temperature analysis of molten pool in twin-roll strip casting process. Key Eng Mater 2007;340–341:695–700. doi: 10.4028/www.scientific.net/KEM.340-341.695
  • Banki R, Hoteit H, Firoozabadi A. Mathematical formulation and numerical modeling of wax deposition in pipelines from enthalpy–porosity approach and irreversible thermodynamics. Int J Heat Mass Transfer. 2008;51(13–14):3387–3398. doi: 10.1016/j.ijheatmasstransfer.2007.11.012
  • Guthrie RIL, Tavares RP. Mathematical and physical modelling of steel flow and solidification in twin-roll/horizontal belt thin-strip casting machines. Appl Math Model 1998;22(11):851–872. doi: 10.1016/S0307-904X(98)10027-6
  • Sahoo S, Ghosh S. Heat transfer, solidification, and microstructural evolution in Al–33Cu alloy during the starting of twin roll strip casting. Steel. Res. Int. 2014;85(2):207–218. doi: 10.1002/srin.201200262
  • Stolbchenko M, Grydin O, Samsonenko A, et al. Numerical analysis of the twin-roll casting of thin aluminium-steel clad strips. Forsch Ingenieurwes 2014;78(3–4):121–130. doi: 10.1007/s10010-014-0182-x
  • Park JJ. Numerical simulations of twin-roll casting for Mg-AZ31 and AA3003 sheets. J Phys Conf Ser 2017;896:012069. doi: 10.1088/1742-6596/896/1/012069
  • Bae JW, Kang CG, Kang SB. Mathematical model for the twin roll type strip continuous casting of magnesium alloy considering thermal flow phenomena. J Mater Process Technol 2007;191(1):251–255. doi: 10.1016/j.jmatprotec.2007.03.058
  • Li Q, Zhang YK, Liu LG, et al. Effect of casting parameters on the freezing point position of the 304 stainless steel during twin-roll strip casting process by numerical simulation. J Mater Sci 2012;47(9):3953–3960. doi: 10.1007/s10853-012-6246-0
  • Miao YC, Zhang XM, Di HS, et al. Numerical simulation of the fluid flow, heat transfer, and solidification of twin-roll strip casting. J Mater Process Technol 2006;174(1):7–13. doi: 10.1016/j.jmatprotec.2005.01.002
  • Li JT, Xu GM, Yu HL, et al. Optimization and application of process parameters in an AZ61 alloy twin-roll strip casting. Mater Sci Forum. 2014;773–774:130–136. doi: 10.4028/www.scientific.net/MSF.773-774.130
  • Griffiths WD, Kayikci R. The effect of varying chill surface roughness on interfacial heat transfer during casting solidification. J Mater Sci 2007;42(11):4036–4043. doi: 10.1007/s10853-006-0388-x
  • Liu L, Liao B, Guo J, et al. 3D numerical simulation on thermal flow coupling field of stainless steel during twin-roll casting. J Mater Eng Perform 2014;23(1):39–48. doi: 10.1007/s11665-013-0749-y
  • Lv Z, Du F, An Z, et al. Centerline segregation mechanism of twin-roll cast A3003 strip. J Alloys Compd 2015;643:270–274. doi: 10.1016/j.jallcom.2015.04.132
  • Seyedein SH, Hasan M. A three-dimensional simulation of coupled turbulent flow and macroscopic solidification heat transfer for continuous slab casters. Int J Heat Mass Transfer. 1997;40(18):4405–4423. doi: 10.1016/S0017-9310(97)00064-1
  • Brinkman HC. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res 1946;1(1):27–34. doi: 10.1007/BF02120313
  • Asai S, Muchi I. Theoretical analysis and model experiments on the formation mechanism of channel-type segregation. Trans Iron Steel Inst. Jpn. 1978;18(2):90–98. doi: 10.2355/isijinternational1966.18.90
  • Mizukami H, Suzuki T, Umeda T. Temperature measurement during rapid solidification of 18Cr-8Ni stainless steel and Its initial solidification structure. Tetsu-to-Hagané. 1991;77(10):1672–1679. doi: 10.2355/tetsutohagane1955.77.10_1672
  • Löser W, Thiem S, Jurisch M. Solidification modelling of microstructures in near-net-shape casting of steels. Mater Sci Eng A. 1993;173(1–2):323–326. doi: 10.1016/0921-5093(93)90237-9
  • Fang Y, Wang Z, Yang QX, et al. Numerical simulation of the temperature fields of stainless steel with different roller parameters during twin-roll strip casting. Int J Miner, Metall Mater. 2009;03:58–62.
  • Rai R, Elmer JW, Palmer TA, et al. Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti–6Al–4V, 304L stainless steel and vanadium. J Phys D: Appl Phys 2007;40(18):5753–5766. doi: 10.1088/0022-3727/40/18/037
  • Blackwell BF, Gill W, Dowding K, et al. Uncertainty estimation in the determination of thermal conductivity of 304 stainless steel. Off Sci Res Inf Tech Rep. 2000;140(1):13–16.
  • Aboutalebi MR, Hasan M, Guthrie RIL. Coupled turbulent flow, heat, and solute transport in continuous casting processes. Metall Mater Trans B. 1995;26(4):731–744. doi: 10.1007/BF02651719
  • Lait JE, Brimacombe JK, Weinberg F. Mathematical modelling of heat flow in the continuous casting of steel. Ironmak Steelmak. 1974;1(2):90–97.
  • Guthrie RIL, Isac M, Kim JS, et al. Measurements, simulations, and analyses of instantaneous heat fluxes from solidifying steels to the surfaces of twin roll casters and of aluminum to plasma-coated metal substrates. Metall Mater Trans B. 2000;31(5):1031–1047. doi: 10.1007/s11663-000-0079-y
  • Yasunaka H, Taniguchi K, Kokita M, et al. Surface quality of stainless steel type 304 cast by twin-roll type strip caster. ISIJ Int 1995;35(6):784–789. doi: 10.2355/isijinternational.35.784

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.