Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 48, 2021 - Issue 4
551
Views
23
CrossRef citations to date
0
Altmetric
Research Articles

Effect of aluminium content on the formation of inclusions in Fe–5Mn–xAl steels

, &
Pages 379-386 | Received 24 Apr 2020, Accepted 29 Jun 2020, Published online: 21 Jul 2020

References

  • Lee Y-K, Han J. Current opinion in medium manganese steel. Mater Sci Technol 2015;31:843. doi: 10.1179/1743284714Y.0000000722
  • Billur E, Altan T. Three Generations of Advanced High Strength Steels for Automotive Applications, Part III - The Third Generation. Stamp. J. 2014: 12.
  • Aydin H, Essadiqi E, Jung IH, et al. Development of 3rd generation AHSS with medium Mn content alloying compositions. Mater Sci Eng A. 2013;564:501. doi: 10.1016/j.msea.2012.11.113
  • Hu B, Luo H, Yang F, et al. Recent progress in medium-Mn steels made with new designing strategies, a review. J Mater Sci Technol 2017;33:1457. doi: 10.1016/j.jmst.2017.06.017
  • Cai ZH, Cai B, Ding H, et al. Microstructure and deformation behavior of the hot-rolled medium manganese steels with varying aluminum-content. Mater Sci Eng A. 2016;676:263. doi: 10.1016/j.msea.2016.08.119
  • Mapelli C, Barella S, Gruttadauria A, et al. Γ Decomposition in Fe–Mn–Al–C lightweight steels. J Mater Res Technol. 2020;9:4604. doi: 10.1016/j.jmrt.2020.02.088
  • Kim H, Suh DW, Kim NJ. Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties. Sci Technol Adv Mater. 2013;14(1). doi: 10.1088/1468-6996/14/1/014205
  • Suh DW, Park SJ, Lee TH, et al. Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel. Metall Mater Trans A Phys Metall Mater Sci. 2010;41:397. doi: 10.1007/s11661-009-0124-7
  • Arlazarov A, Gouné M, Bouaziz O, et al. Evolution of microstructure and mechanical properties of medium Mn steels during double annealing. Mater Sci Eng A. 2012;542:31. doi: 10.1016/j.msea.2012.02.024
  • Park JH, Kim DJ, Min DJ. Characterization of nonmetallic inclusions in high-manganese and aluminum-alloyed austenitic steels. Metall Mater Trans A. 2012;43:2316. doi: 10.1007/s11661-012-1088-6
  • Mapelli C. Control and engineering of non-metallic inclusions belonging to xSiO2–yCaO–zAl2O3 system in Ca-treated Al-killed and Al–Si-killed steel. Steel Res Int. 2006;77:462. doi: 10.1002/srin.200606416
  • Tuling A, Mintz B. Crystallographic and morphological aspects of AlN precipitation in high Al, TRIP steels. Mater Sci Technol 2016;32:568. doi: 10.1179/1743284715Y.0000000126
  • Kang SE, Banerjee JR, Mintz B. Influence of S and AlN on hot ductility of high Al, TWIP steels. Mater Sci Technol 2012;28:589. doi: 10.1179/1743284711Y.0000000109
  • Funnell GD, Davies RJ. Effect of aluminium nitride particles on hot ductility of steel. Met Technol. 1978;5:150. doi: 10.1179/mt.1978.5.1.150
  • Ånmark N, Karasev A, Jönsson P. The effect of different Non-metallic inclusions on the machinability of steels. Materials (Basel). 2015;8:751. doi: 10.3390/ma8020751
  • He S, Chen G, Guo Y, et al. Morphology control for Al2O3 inclusion without Ca treatment in high-aluminum steel. Metall Mater Trans B. 2015;46:585. doi: 10.1007/s11663-014-0264-z
  • Mapelli C. Non-metallic inclusions and clean steel. Metall Ital 2008;100:43.
  • Nabeel M, Alba M, Sun S, et al. in AISTech, 2018.
  • Nabeel M, Alba M, Karasev A, et al. Characterization of inclusions in 3rd generation advanced high-strength steels. Metall Mater Trans B. 2019;50:1674. doi: 10.1007/s11663-019-01605-0
  • Alba M, Nabeel M, Dogan N. Investigation of inclusion formation in light-weight Fe–Mn–Al steels using automated scanning electron microscope equipped with energy-dispersive X-ray spectroscopy. Steel Res Int. 2020;91(3). doi: 10.1002/srin.201900477
  • Jang J-M, Paek M-K, Pak J-J. Thermodynamics of nitrogen solubility and AlN formation in multi-component high Mn steel melts. ISIJ Int 2017;57:1821. doi: 10.2355/isijinternational.ISIJINT-2017-223
  • Liu H, Liu J, Michelic SK, et al. Cover picture: steel research int. 1/2016. Steel Res Int. 2016;87:1. doi: 10.1002/srin.201670011
  • Paek M-K, Jang J-M, Kang H-J, et al. Reassessment of AlN (s)= Al+N equilibration in liquid Iron. ISIJ Int 2013;53:535. doi: 10.2355/isijinternational.53.535
  • Paek M-K, Jang J-M, Do K-H, et al. Nitrogen solubility in high manganese-aluminum alloyed liquid steels. Met Mater Int 2013;19:1077. doi: 10.1007/s12540-013-5024-0
  • Paek M, Jang J, Jiang M, et al. Thermodynamics of AlN formation in high manganese-aluminum alloyed liquid steels. ISIJ Int 2013;53:973. doi: 10.2355/isijinternational.53.973
  • JSPS. Steelmaking data sourcebook. Revised. Gordon and Breach Science Publications; 1988.
  • Sigworth GK, Elliot JF. The thermodynamics of liquid dilute iron alloys. Met Sci 1974;8:298. doi: 10.1179/msc.1974.8.1.298
  • Itoh H, Hino M, Ban-Ya S. Assessment of Al deoxidation equilibrium in liquid iron. Tetsu-to-Hagane. 1997;83:773. doi: 10.2355/tetsutohagane1955.83.12_773
  • Kim DH, Jung MS, Nam H, et al. Thermodynamic relation between silicon and aluminum in liquid iron. Metall Mater Trans B Process Metall Mater Process Sci. 2012;43:1106. doi: 10.1007/s11663-012-9677-8
  • Liu H, Liu J, Michelic S, et al. Characteristics of AlN inclusions in low carbon Fe–Mn–Si–Al TWIP steel produced by AOD-ESR method. Ironmak Steelmak 2016;43:171. doi: 10.1179/1743281215Y.0000000028
  • Turkdogan ET. Fundamentals of steelmaking. London: The Institute of Materials; 1996.
  • Willems HX, Hendrix MMRM, de With G, et al. Thermodynamics of Alon II: phase relations. J Eur Ceram Soc 1992;10:339. doi: 10.1016/0955-2219(92)90089-V
  • Bramfitt BL. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall Trans. 1970;1:1987. doi: 10.1007/BF02642799
  • Dovidenko K, Oktyabrsky S, Narayan J, et al. Aluminum nitride films on different orientations of sapphire and silicon. J Appl Phys 1996;79:2439. doi: 10.1063/1.361172
  • Ohta H, Suito H. Precipitation and dispersion control of MnS by deoxidation products of ZrO2, Al2O3, MgO and MnO–SiO2 particles in Fe–10mass%Ni alloy. ISIJ Int 2006;46:480. doi: 10.2355/isijinternational.46.480
  • Li F, Li H, Huang D, et al. Mechanism of MnS precipitation on Al2O3–SiO2 inclusions in non-oriented silicon steel. Met Mater Int 2018;24:1394. doi: 10.1007/s12540-018-0141-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.