Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 48, 2021 - Issue 4
325
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effects of austenite deformation on continuous cooling transformation of the pearlite heat-resistant steel

, , , ORCID Icon, , & show all
Pages 402-408 | Received 01 May 2020, Accepted 18 Jul 2020, Published online: 06 Aug 2020

References

  • Harada N, Takuma M, Tsujikawa M, et al. Effects of V addition on improvement of heat shock resistance and wear resistance of Ni–Cr–Mo cast steel brake disc. Wear. 2013;302(1-2):1444–1452. doi: 10.1016/j.wear.2013.01.029
  • Samrout H, Abdi REI. Fatigue behaviour of 28CrMoV5-08 steel under thermomechanical loading. Int J Fatigue. 1998;20(8):555–563. doi: 10.1016/S0142-1123(97)00130-8
  • Li Z, Han J, Li W, et al. Low cycle fatigue behavior of Cr–Mo–V low alloy steel used for railway brake discs. Mater Des. 2014;56:146–157. doi: 10.1016/j.matdes.2013.10.093
  • Xu F, Li D, Wang L, et al. Electroslag remelting effect on inclusions in 42CrMo steel and CCT curve study. Chin J Eng. 2016;38:201–205.
  • Zheng Y, Wu R, Li X, et al. Continuous cooling transformation behaviour and bainite formation kinetics of new bainitic steel. Mater Sci Technol. 2017;33(4):454–463. doi: 10.1080/02670836.2016.1224608
  • Hu Y, Chen F, Xie J, et al. Testing study on SW-CCT diagram of 12Cr1MoV steel. J. Weld. 2010;12:41–44.
  • Zhang C, Cai D, Wang Y, et al. Effects of deformation and Mo, Nb, V, Ti on continuous cooling transformation in Cu–P–Cr–Ni–Mo weathering steels. Mater Character. 2008;59(11):1638–1642. doi: 10.1016/j.matchar.2008.03.003
  • Xu Y, Yu Y, Xiao B, et al. Microstructural evolution in an ultralow-C and high-Nb bearing steel during continuous cooling. J Mater Sci. 2009;44(15):3928–3935. doi: 10.1007/s10853-009-3526-4
  • Wang M, Xu G, Hu H, et al. Research on dynamic CCT curve of 12Cr2Mo1R pressure vessel steel. J Mater Metall. 2014;4:280–283.
  • Kim YM, Lee H, Kim NJ. Transformation behavior and microstructural characteristics of acicular ferrite in linepipe steels. Mater Sci Eng A. 2008;478(1-2):361–370. doi: 10.1016/j.msea.2007.06.035
  • Xiao F, Liao B, Shan YY, et al. Challenge of mechanical properties of an acicular ferrite pipeline steel. Mater Sci Eng A. 2006;431(1–2):41–52. doi: 10.1016/j.msea.2006.05.029
  • Bai D, Yue S, Maccagno T, et al. Effect of deformation and cooling rate on the microstructures of low carbon Nb-B steels. ISIJ Int. 1998;38(4):371–379. doi: 10.2355/isijinternational.38.371
  • Zolotarevskii NY, Zisman AA, Panpurin SN, et al. Effect of the grain size and deformation substructure of austenite on the crystal geometry of bainite and martensite in low-carbon steels. Met Sci Heat Treat. 2014;55(9-10):550–558. doi: 10.1007/s11041-014-9668-2
  • Kawata H, Sakamoto K, Moritani T, et al. Crystallography of ausformed upper bainite structure in Fe–9Ni–C alloys. Mater Sci Eng A. 2006;438:140–144. doi: 10.1016/j.msea.2006.02.175
  • Chang LC. Microstructure and reaction kinetics of bainite transformation in Si-rich steel. Mater Sci Eng. 2004;368(1-2):175–182. doi: 10.1016/j.msea.2003.10.297
  • Azuma M, Fujita N, Takahashi M. Modelling upper and lower bainite transformation in steels. ISIJ Int. 2005;45(2):221–228. doi: 10.2355/isijinternational.45.221
  • Enomoto M. Partition of carbon and alloying elements during the growth of ferrous bainite. Scr Mater. 2002;47(3):145–149. doi: 10.1016/S1359-6462(02)00120-3
  • Fang HS, Yang JB, Yang ZG. The mechanism of bainite transformation in steels. Scr Mater 2002;47(3):157–162. doi: 10.1016/S1359-6462(02)00122-7
  • Craven AJ, He K, Garvie L. Complex heterogeneous precipitation in titanium–niobium microalloyed HSLA steel-I. Acta Mater. 2002;48:3857–3868. doi: 10.1016/S1359-6454(00)00194-4
  • Craven AJ, He K, Garvie L. Complex heterogeneous precipitation in titanium–niobium microalloyed HSLA steel-II. Acta Mater. 2002;48:3869–3878. doi: 10.1016/S1359-6454(00)00193-2
  • Strife JR, Carr MJ, Ansell GS. The effect of austenite prestrain above the Md temperature on the martensitic transformation in Fe–Ni–Cr–C alloys. Metall Trans A. 1977;8(9):1471–1484. doi: 10.1007/BF02642861
  • Tsuzaki K, Fukasaku S, Tomota Y, et al. Effect of prior deformation of austenite on the γ→( martensitic transformation in Fe–Mn alloys. Mater Trans. 1991;32(3):222–228. doi: 10.2320/matertrans1989.32.222
  • Olson GB. Morris Cohen: a memorial tribute. Mater Ence Egn A. 2006;438:2–11. doi: 10.1016/j.msea.2006.02.140
  • Dobrzaski LA, Sitek W. Designing of the chemical composition of constructional alloy steels. J Mater Proc Technol. 1999;89:467–472. doi: 10.1016/S0924-0136(99)00140-5
  • Krauss G. Steels processing, structure, and performance. ASM Int. 2005;5:164–167.
  • Lee SJ, Park JS, Lee YK. Effect of austenite grain size on the transformation kinetics of upper and lower bainite in a low-alloy steel. Scr Mater. 2008;59(1):87–90. doi: 10.1016/j.scriptamat.2008.02.036
  • Pawlak K, Biaobrzeska B, Konat U. The influence of austenitizing temperature on prior austenite grain size and resistance to abrasion wear of selected low-alloy boron steel. Arch Civil Mec Eng. 2016;16(4):913–926. doi: 10.1016/j.acme.2016.07.003
  • Białobrzeska B, Dziurka R, Żak A, et al. The influence of austenitization temperature on phase transformations of supercooled austenite in low-alloy steels with high resistance to abrasion wear. Arc Civil Mec Eng. 2018;18(2):413–429. doi: 10.1016/j.acme.2017.09.004
  • Brofman PJ, Ansell GS. On the effect of fine grain size on the M s temperature in Fe–27Ni–0.025 C alloys. Metall Mater Trans A. 1983;14(9):1929–1931. doi: 10.1007/BF02645565
  • Lee SJ, Lee YK. Effect of austenite grain size on martensitic transformation of a low alloy steel. Mater Sci Forum. 2005;475:3169–3172. doi: 10.4028/www.scientific.net/MSF.475-479.3169
  • Huang J, Xu Z. Effect of dynamically recrystallized austenite on the martensite start temperature of martensitic transformation. Mater Sci Eng A. 2006;438:254–257. doi: 10.1016/j.msea.2006.02.069
  • Nichol TJ, Judd G, Ansell GS. The relationship between austenite strength on the transformation to martensite in Fe-10 pct -Ni 0.6 pct C alloys. Marten Trans A. 1977;8:1877–1883.
  • García-Junceda A, Capdevila C, Caballero FG, et al. Dependence of martensite start temperature on fine austenite grain size. Scr Mater. 2008;58(2):134–137. doi: 10.1016/j.scriptamat.2007.09.017
  • Yang W, Hu A, Qi J, et al. Microstructure refinement of deformation-enhanced transformation in low carbon steel. Chin. J. Mater. Res. 2001;15(2):171–178.
  • Xiao F, Liao B, Ren D, et al. Acicular ferritic microstructure of a low-carbon Mn–Mo–Nb microalloyed pipeline steel. Mater Character. 2005;54(4-5):305–314. doi: 10.1016/j.matchar.2004.12.011
  • Cizek P, Wynne BP, Davies CHJ, et al. Effect of composition and austenite deformation on the transformation characteristics of low-carbon and ultralow-carbon microalloyed steels. Metall Mater Trans A. 2002;33(5):1331–1349. doi: 10.1007/s11661-002-0059-8
  • Ko T, Cottrell SA. The formation of bainite. J. Iron Steel Ins. 1952;172(3):307–313.
  • Nikravesh M, Naderi M, Akbari GH. Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel. Mater Sci Eng. A. 2012;540:24–29. doi: 10.1016/j.msea.2012.01.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.