Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 49, 2022 - Issue 3
130
Views
2
CrossRef citations to date
0
Altmetric
Articles

Dynamic recrystallisation and constitutive equation in hot deformed AISI H10 tool steel

, &
Pages 322-334 | Received 22 Jun 2021, Accepted 15 Oct 2021, Published online: 06 Feb 2022

References

  • Ebrahimi R, Solhjou S. Characteristic points of stress-strain curve at high temperature. Int J Iron Steel Soc Iran. 2007;4:24–27.
  • Ebrahimi GR, Keshmiri H, Maldar AR, et al. Dynamic recrystallization behavior of 13%Cr martensitic stainless steel under hot working condition. J Mater Sci Technol. 2012;28:467–473.
  • Poliak EI, Jonas JJ. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater. 1996;44:127–136.
  • Poliak EI, Jonas JJ. Initiation of dynamic recrystallization in constant strain rate hot deformation. ISIJ Int. 2003;43:684–691.
  • Solhjoo S. Determination of critical strain for initiation of dynamic recrystallization. Mater Des. 2010;31:1360–1364.
  • Eskandari M, Zarei-hanzaki A, Marandi A. An investigation into the mechanical behavior of a new transformation-twinning induced plasticity steel. Mater Des. 2012;39:279–284.
  • Stewart GR, Jonas JJ, Montheillet F. Kinetics and critical conditions for the initiation of dynamic recrystallization in 304 stainless steel. ISIJ Int. 2004;44:1581–1589.
  • Jonas JJ, Poliak EI. The Critical Strain for Dynamic Recrystallization in Rolling Mills, Materials Science Forum. 2003;426(1):57–66.
  • Poliak EI, Jonas JJ. Critical Strain for Dynamic Recrystallization in variable strain rate Hot deformation. ISIJ Int. 2003;43:692–700.
  • Najafizadeh A, Jonas JJ. Predicting the critical stress for initiation of dynamic recrystallization. ISIJ Int. 2006;46:1679–1684.
  • Dehghan-Manshadi A, Barnet MR, Hodgson PD. Hot deformation and recrystallization of austenitic stainless steel: part I. dynamic recrystallization. Metall Mater Trans A. 2008;39A:1359–1370.
  • Jorge Junior AM, Balancin O. Prediction of steel flow stresses under hot working conditions. Mater Res. 2005;8:309–315.
  • Wu ST, Feng W, Hu X. Constitutive modelling of flow behaviour of 20CrMnTiH steel. Ironmak Steelmak. 2015;42:481–488.
  • Hui L, Mei X, Zhutie L, et al. Hot deformation behaviour and processing map of a typical Fe-Mn-Si-Cr steel for automotive body structures. Ironmak Steelmak. 2017;45:1–7.
  • Zuriñe A, Leire M, Iñaki P, et al. Failure assessment in a H10 hot die forging tool related to thermal fatigue. Brno Czech Republic EU. 2015;5:1–6.
  • Okuno T. Effect of microstructure on the toughness of hot work tool steels, AISI H13, H10, and H19. Trans Iron Steel Inst Jpn. 1987;27:51–59.
  • Pant M, Bleck W. Continuous impact wear resistance of duplex surface-modified hot work tool steel H10. Wear. 2005;259:377–382.
  • Kamali Ardakani M, Morakabati M. The effects of temperature and strain rate on the hot deformation behavior of AISI H10 tool steel”. Metall Res Technol. 2021;118(107.
  • Shaban M, Eghbali B. Determination of critical conditions for dynamic recrystallization of a microalloyed steel. Mater Sci Eng A. 2010;527(527):4320–4325.
  • Perdrix Ch, Caractéristiques d'écoulement plastique du métal dans les conditions du TAB à Chaud. Commission des Communautés européennes. 1982:58–74.
  • Stewart GR, Elwazri AM, Yue S, et al. Modelling of dynamic recrystallisation kinetics in austenitic stainless and hypereutectoid steels. Mater Sci Technol. 2006;22:519–524.
  • Mejía I, Bedolla-Jacuinde A, Maldonado C, et al. Determination of the critical conditions for the initiation of dynamic recrystallization in boron microalloyed steels. Mater Sci Eng A. 2011;528:4133–4140.
  • Hamtaei S, Zarei-Hanzaki A, Mohamadizadeh A. Optimum deformation criteria and flow behavior description of boron-alloyed steel through numerical approach. Steel Res Int. 2016;87:1657–1669.
  • Wu H, Wen SP, Huang H, et al. Hot deformation behavior and constitutive equation of a new type Al–Zn–Mg–Er–Zr alloy during isothermal compression. Mater Sci Eng A. 2016;651:415–424.
  • Liu J, Chang H, Wu R, et al. Investigation on hot deformation behavior of AISI T1 high-speed steel. Mater Charact. 2000;45:175.
  • Rodenburg C, Krzyzanowski M, Beynon JH, et al. Hot workability of spray-formed AISI M3:2 high-speed steel. Mater Sci Eng A. 2004;386:420–427.
  • Imbert CAC, McQueen HJ. Peak strength, strain hardening and dynamic restoration of A2 and M2 tool steels in hot deformation. Mater Sci Eng A. 2001;313:88–103.
  • Imbert CAC, McQueen HJ. Dynamic recrystallization of D2 and W1 tool steels. Mater Sci Technol. 2000;16:524–531.
  • McQueen HJ, Ryan ND. Constitutive analysis in hot working. Mater Sci Eng A. 2002;322(43).
  • Bao-Sheng X, Qing-Wu C, Wei Y, et al. Prediction for flow stress of 95CrMo hollow steel during Hot compression. Acta Metall Sin. 2017;30:250–260.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.