Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 49, 2022 - Issue 6
213
Views
0
CrossRef citations to date
0
Altmetric
Articles

XDEM study of burden distribution in iron ore pellet firing

, ORCID Icon, ORCID Icon, &
Pages 615-625 | Received 07 Sep 2021, Accepted 22 Nov 2021, Published online: 12 Mar 2022

References

  • Ljung A-L. Modeling drying of iron ore pellets [PhD Thesis]. Luleå tekniska universitet; 2010.
  • Forsmo S. Influence of green pellet properties on pelletizing of magnetite iron ore [PhD Thesis]. Luleå tekniska universitet; 2007.
  • Kumar TKS, Viswanathan NN, Ahmed H, et al. Investigation of magnetite oxidation kinetics at the particle scale. Metall Mater Trans B. 2019;50:150–161.
  • Forsmo SPE, Forsmo S-E, Samskog P-O, et al. Mechanisms in oxidation and sintering of magnetite iron ore green pellets. Powder Technol. 2008;183:247–259.
  • Wynnyckyj JR, McCurdy WA. Causes of the shell and core structure and layered inhomogeneity in iron ore pellets. Metall Trans. 1974;5:2207–2215.
  • Nabeel M, Karasev A, Jönsson P. Evaluation of dust generation during mechanical wear of iron ore pellets. ISIJ International. 2016;56:960–966.
  • Geerdes M, Chaigneau R, Kurunov I. Inleiding tot het hoogovenproces: moderne ruwijzerproductie. Ios Press; Nederland, 2016.
  • Davis RA, Englund DJ. Model and simulation of a ported kiln for iron oxide pellet induration. Can J Chem Eng. 2003;81:86–93.
  • Majumder S, Natekar PV, Runkana V. Virtual indurator: a tool for simulation of induration of wet iron ore pellets on a moving grate. Comput Chem Eng. 2009;33:1141–1152.
  • Dwarapudi S, Devi TU, Rao SM, et al. Influence of pellet size on quality and microstructure of iron ore pellets. ISIJ International. 2008;48:768–776.
  • Amani H, Alamdari EK, Ebrahim HA, et al. Mathematical modeling of thermal behavior of single iron ore pellet during heat hardening oxidation. J Therm Anal Calorim. 2022;147:2293–2303.
  • Gudenau P, Kortman D, Papacek D. The influence of the diameter of iron ore pellets on their production parameters and on their metallurgical properties. Proceedings, 4th International Symposium on Agglomeration; 1985. p. 329–334.
  • Halt JA, Nitz MC, Kawatra SK, et al. Iron ore pellet dustiness part I: factors affecting dust generation. Min Process Ext Met Rev. 2015;36:258–266.
  • Salmani M, Alamdari EK, Firoozi S. Isoconversional analysis of thermal dissociation kinetics of hematite in air and inert atmospheres. J Therm Anal Calorim. 2017;128:1385–1390.
  • Pomerleau D, Hodouin D, Poulin E. A first principle simulator of an iron oxide pellet induration furnace – an application to optimal tuning. Can Metall Quarterly. 2005;44:571–582.
  • Thurlby JA, Batterham RJ, Turner RE. Development and validation of a mathematical model for the moving grate induration of iron ore pellets. Int J Miner Process. 1979;6:43–64.
  • Küçükada K, Thibault J, Hodouin D, et al. Modelling of a pilot scale iron ore pellet induration furnace. Can Metall Quarterly. 1994;33:1–12.
  • Sadrnezhaad SK, Ferdowsi A, Payab H. Mathematical model for a straight grate iron ore pellet induration process of industrial scale. Comput Mater Sci. 2008;44:296–302.
  • de Paula Vitoretti F, de Castro JA. Study of the induration phenomena in single pellet to traveling grate furnace. J Mater Res Technol. 2013;2:315–322.
  • Fan X-H, Yang G-M, Chen X-l, et al. Predictive models and operation guidance system for iron ore pellet induration in traveling grate-rotary kiln process. Comput Chem Eng. 2019;79:80–90.
  • Tan S, Peng J, Shi H. Modeling and simulation of iron ore pellet drying and induration process with accurate bed void fraction calculation. Drying Technol. 2016;34:651–664.
  • Ahn H, Choi S. A comparison of the shrinking core model and the grain model for the iron ore pellet indurator simulation. Comput Chem Eng. 2017;97:13–26.
  • Ljung A-L, Frishfelds V, Lundström TS, et al. Discrete and continuous modeling of heat and mass transport in drying of a bed of iron ore pellets. Drying Technology. 2012;30:760–773.
  • Baniasadi M, Peters B, Baniasadi M, et al. Hydrodynamic analysis of gas-liquid-liquid-solid reactors using the XDEM numerical approach. Can J Chem Eng. 2018;96:2673–2683.
  • Baniasadi M, Peters B, Pierret J-C, et al. Experimental and numerical investigation into the softening behavior of a packed bed of iron ore pellets. Powder Technol. 2018;339:863–871.
  • Minkowycz WJ, Sparrow EM. Advances in numerical heat transfer. Vol. 2, Routledge; 2018.
  • Nield DA, Bejan A. Convection in porous media. Vol. 3, Springer-Verlag New York; 2006.
  • Mahmoudi AH, Hoffmann F, Peters B. Application of XDEM as a novel approach to predict drying of a packed bed. Int J Therm Sci. 2014;75:65–75.
  • Mahmoudi AH, Hoffmann F, Peters B. Detailed numerical modeling of pyrolysis in a heterogeneous packed bed using XDEM. J Anal Appl Pyrolysis. 2014;106:9–20.
  • Peters B, Baniasadi M, Baniasadi M, et al. XDEM multi-physics and multi-scale simulation technology: review of DEM?????CFD coupling, methodology and engineering applications. Particuology. 2019;44:176–193.
  • Baniasadi Maryam, Peters B. Resolving multiphase flow through packed bed of solid particles using eXtended discrete element method with porosity calculation. Ind Eng Chem Res. 2017;56:11996–12008.
  • Hager J, Hermansson M, Wimmerstedt R. Modelling steam drying of a single porous ceramic sphere: experiments and simulations. Chem Eng Sci. 1997;52:1253–1264.
  • Grønli MG. A theoretical and experimental study of the thermal degradation of biomass [PhD Thesis]. Trondheim: Norwegian University of Science and Technology; 1996.
  • Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. 2nd ed. New York (NY): Wiley; 2002.
  • Bruch C, Peters B, Nussbaumer T. Modelling wood combustion under fixed bed conditions. Fuel. 2003;82:729–738.
  • Hou Q, Li J, Yu A. CFD-DEM study of heat transfer in the reduction shaft of corex. Steel Research International. 2015;86:626–635.
  • Papanastassiou D, Bitsianes G. Mechanisms and kinetics underlying the oxidation of magnetite in the induration of iron ore pellets. Metall Trans. 1973;4:487–496.
  • Forsmo SPE, Forsmo S-E, Samskog P-O, et al. Mechanisms in oxidation and sintering of magnetite iron ore green pellets. Powder Technol. 2008;183:247–259.
  • Monazam ER, Breault RW, Siriwardane R. Kinetics of magnetite (Fe3O4) oxidation to hematite (Fe2O3) in air for chemical looping combustion. Ind Eng Chem Res. 2014;53:13320–13328.
  • Szekely J, Evans JW, Sohn HY. Gas-solid reactions. 1st ed. Michigan: Academic Press; 1976.
  • Patisson F, Ablitzer D. Physicochemical and thermal modelling of the reaction between a porous pellet and a gas. Powder Technol. 2002;128:300–305.
  • Ghadi AZ, Valipour MS, Biglari M. Mathematical modelling of wustite pellet reduction: grain model in comparison with USCM. Ironmak Steelmak. 2016;43:418–425.
  • Melchiori T, Canu P. Improving the quantitative description of reacting porous solids: critical analysis of the shrinking core model by comparison to the generalized grain model. Ind Eng Chem Res. 2013;53:8980–8995.
  • Monazam ER, Breault RW, Siriwardane R. Kinetics of magnetite (Fe3O4) oxidation to hematite (Fe2O3) in air for chemical looping combustion. Ind Eng Chem Res. 2014;53:13320–13328.
  • Küçükada K. Modelling of iron ore pellet induration in a pilot scale pot-grate furnace. Universite Laval; 1997.
  • Barati M. Dynamic simulation of pellet induration process in straight-grate system. Int J Miner Process. 2008;89:30–39.
  • Faghri A, Zhang Y. Transport phenomena in multiphase systems. Elsevier, Amsterdam; 2006.
  • Peters B. Thermal conversion of solid fuels (Developments in heat transfer). WIT Press, Germany; 2002.
  • Anand A, Curtis JS, Wassgren CR, et al.. Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM). Chem Eng Sci. 2008;63:5821–5830.
  • Elperin T, Golshtein E. Comparison of different models for tangential forces using the particle dynamics method. Phys A: Stat Mech Appl. 1997;242:332–340.
  • Bai H, Theuerkauf J, Gillis PA, et al. A coupled DEM and CFD simulation of flow field and pressure drop in fixed bed reactor with randomly packed catalyst particles. Ind Eng Chem Res. 2009;48:4060–4074.
  • Zhou Z, Zhu H, Yu A, et al. Discrete particle simulation of solid flow in a model blast furnace. ISIJ International. 2005;45:1828–1837.
  • Yang W, Zhou Z, Pinson D, et al. Periodic boundary conditions for discrete element method simulation of particle flow in cylindrical vessels. Ind Eng Chem Res. 2014;53:8245–8256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.