Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 49, 2022 - Issue 9
209
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comments on oxide inclusion formation/removal in the ESR process

&
Pages 917-931 | Received 08 Feb 2022, Accepted 18 Apr 2022, Published online: 16 May 2022

References

  • Schwerdtfeger K, Ries R, Bruckmann G. Investigations on the ESR process. In: Inouye M, editor. Proceedings of 7th international conference on vacuum metallurgy. Iron and Steel Institute Japan; 1982. p. 1204–1220.
  • Goro Y, Tadamasa Y, Kentaro S. Quality improvements of high alloy steels by ESR. In: Nakano H, editor. Proceedings of 4th international symposium on ESR. Iron and Steel Institute of Japan; 1973. p. 229–239.
  • Tetzuka M, Yamamoto S, Takahashi F, et al. Internal quality of 2150mm dia ingot manufactured using new 150T ESR furnace. In: Ookomori Y, editor. Proceedings of IFM2014. Steel Castings and Forgings Association of Japan; 2014. p. 90–95.
  • Li S, Cheng G-g, Miao Z-q, et al. Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting. Int J Miner Metall Mater. 2019;26(3):291–300.
  • Hou D, Wang D-y, Jiang Z-h, et al. Investigation on slag–metal-inclusion multiphase reactions during electroslag remelting of die steel. Metall Mater Trans B. 2021;52B:478–493.
  • Shi C, Wang H, Li J. Effects of reoxidation of liquid steel and slag composition on the chemistry evolution of inclusions during electroslag remelting. Metall Mater Trans B. 2018;49B:1675–1689.
  • Mitchell A. Oxide inclusion behaviour during consumable electrode remelting. Ironmak Steelmak J. 1974;1(3):172–183.
  • Li ZB, Zhou WH, Li YD. Mechanism of removal of non-metallic inclusions in the ESR process. Iron Steel. 1980;15(1):20–31.
  • Fu J. An investigation of mechanism on the removal of oxide inclusions during ESR process. Acta Metall Sin. 1979;15(4):526–533.
  • Zhengbeng L. Electroslag remelted bearing steel. Iron Steel. 1966;1:20–24.
  • Zmoidin GI. Mass transfer coefficients in ESR. Akad Nauk SSSR. 1972;4:60–66.
  • Hoyle G. Electroslag process principles and practice. London: Applied Science Publishers; 1983.
  • Volkov SE. Non-metallic inclusion and defects in ESR ingots. Kyiv: Naukova Dumka; 1979. p. 9–12.
  • Wang F, Sun B, Liu Z, et al. Numerical simulation on motion behavior of inclusions in the lab-scale electroslag remelting process with a vibrating electrode. Metals (Basel). 2021;11:1784–1809.
  • Huang X, Li B, Liu Z, et al. Numerical investigation and experimental validation of motion and distribution of nonmetallic inclusions in argon protection electroslag remelting process. Metals (Basel). 2018;8:392–312.
  • Anable WE, Nafziger RH, Robinson DC. Electroslag remelting of type 316 stainless steel. J Met. 1973;3,:55–61.
  • Jackson RO, Mitchell A, Luchok J. An examination of electrode change practice in electroslag melting. J Vac Sci Technol. 1972;9:1301–1305.
  • Mitchell A, Joshi S, Cameron J. Electrode temperature gradients in the electroslag process. Metall Trans. 1971;2:561–566.
  • Chan JCF, Guerard JW, Miller D, et al. The re-solution of inclusions in remelted stainless steels. Metall Mater Trans B. 1976;7B:135–141.
  • Chen X-c, Shi C-b, Guo H-j, et al. Investigation of oxide inclusions and primary carbonitrides in inconel 718 superalloy refined through electroslag remelting process. Metall Mater Trans B. 2012;43B:1596–1607.
  • Yang L, Cheng G-G, Li S-j, et al. Generation mechanism of TiN inclusion for GCr15SiMn during electroslag remelting process. ISIJ Int. 2015;55(9):1901–1905.
  • Yang L, Cheng G-g. Characteristics of Al2O3, MnS, and TiN inclusions in the remelting process of bearing steel. Int J Miner Metall Mater. 2017;24(8):869–874.
  • Zheng D, Li J, Shi C, et al. Evolution of TiN and oxide inclusions in Ti-containingFe-25Ni-15Cr alloy during electroslag remelting. ISIJ Int. 2020;60(8):1577–1585.
  • Reyes-Carmona F. Non-Metallic inclusions in Electroslag Refined ingots [Ph.D. Dissertation]. University of British Columbia; 1983.
  • Campbell J. Fluid flow and droplet formation in the electroslag remelting process. J Met. 1970;1,:23–35.
  • Wen T, Li X, Xu A, et al. Mathematical simulation on the influence of melting rate and melting current on droplet behavior during electroslag remelting process. In: Lee J, editor. Materials processing fundamentals 2020. The minerals, metals & materials series. DOI:10.1007/978-3-030-36556-pp1_14.
  • Zhang L, Wen T, Chen W, et al. Mathematical modeling on the initial melting of the consumable electrode during electroslag remelting process. Metall Mater Trans B. 2021. DOI:10.1007/s11663-021-02318-z.
  • Mitchell A, Burel B. The solution rate of alumina in CaF2-Al2 O3 slags. Metall Trans. 1970;1:2253–2256.
  • Li JL, Shu QF, Liu YA, et al. Dissolution rate of Al2O3 into molten CaO–Al2O3–CaF2 flux. Ironmak Steelmak J. 2014;41(10):732–737.
  • Li Q, Zhong Y-B, Sun C-X, et al. Effect transverse static magnetic field on droplets transient and inclusions evolution during the electroslag remelting process of GCr15 ingots. Acta Metall Sin. 2018;31:1311–1316.
  • Sjöqvist-Persson E, Karasev A, Mitchell A, et al. Origin of the inclusions in production-scale electrodes, ESR ingots, and PESR ingots in a martensitic stainless steel. Metals (Basel). 2020;10:1620–1636.
  • Zhengbang L. Mechanism of oxide inclusion removal in the ESR process. In: Bhat GK, editor. Special melting and processing technologies. Philadelphia NJ USA: Noyes; 1988. p. 732–748.
  • Ueda S, Funazaki M, Kajikawa K, et al. ESR processing for high nickel alloys. In: Lee PD, Mitchell A, Bellot J-P, Jardy A, editors. Proceedings of LMPC 2003. Paris: SFM2 ; 2003. p. 131–140.
  • Paton BE, Medovar BI, Emelianenko YG, et al. Investigation methods; transformation and removal of Non-Metallic inclusions during ESR. In: Bhat GK, Simkovitch A, editors. Proceedings of 5th international symposium on ESR.. USA: AMS; 1976. p. 433–448.
  • Paton BE, Medovar BI. Problems of electroslag technology. Kyiv: Naukova Dumka; 1978.
  • Ho WC, Mitchell A. Mass transfer model analysis of ESR. Acta Met Sinica. 1987;23B:126–134.
  • Ho WC. Oxidation of alloying elements during ESR of stainless steel. In: Bhat GK, editor. Special melting and processing technologies. Park Ridge (NJ): Noyes Publications; p. 706–722.
  • Hou D, Jiang Z-H, Dong Y-W, et al. Mass transfer model of desulfurization in the electroslag remelting process. Metall Mater Trans B. 2017;48B:1885–1897.
  • Boronenkov VN, Shanchurarov SM, Zalomov NI, et al. Mathematical model of prediction of electroslag ingots composition. In: Fu J, Zhang R, Xie X, Bloore E, editors. Proceedings of 10th international conference on vacuum metallurgy. Beijing: Metallurgical Industry Press; 1990. p. 276–292.
  • Shi C-b, Yu W-t, Wang H, et al. Simultaneous modification of alumina andMgO.Al2O3 inclusions by calcium treatment during electroslag remelting of stainless tool steel. Metall Mater Trans B. 2017;48B:146–161.
  • Hawkins RJ, Swinden DJ, Pocklington DN. Relevance of laboratory experiments to the control of composition in production-scale ESR. In: Craik R L, editor. Electroslag remelting. London: Iron and Steel Institute UK; 1973. p. 21–35.
  • Wang J, Zhang L, Wen T, et al. Kinetic prediction for the composition of inclusions in the molten steel during the electroslag remelting. Metall Mater Trans B. 2021;52B:1521–1531.
  • Shi C. Deoxidation of electroslag remelting (ESR) – a review. ISIJ Int. 2020;60(6):1083–1096.
  • Fraser ME, Mitchell A. Model of chemical reactions in ESR. J Ironmak Steelmak. 1976;3:279–288.
  • Shi C, Park JH. Evolution of oxide inclusions in Si-Mn-killed steel during protective atmosphere electroslag remelting. Metall Mater Trans B. 2019;50B:1139–1147.
  • Holzgruber W. Oxygen control in the electroslag refining of steels. In: Bhat GH, Johnston HA, editors. Proceedings of first international symposium on electrode melting and casting technology, Mellon Institute 1971. Pittsburgh (PA): Mellon Inst; 1971. Paper # 3.
  • Gokcen NA, Chipman J. Aluminum-oxygen equilibrium in liquid iron. J Met. 1953;Jan:173–178.
  • Bell M. On the origins of inclusions in the electroslag process [MASc thesis]. University of British Columbia; 1971.
  • Wang M, Xiao W, Gan P, et al. Study on inclusions distribution and cyclic fatigue performance of gear steel 18CrNiMo7-6 forging. Metals (Basel). 2020;10:201–214. DOI:10.3390/met10020201.
  • Radwitz TS. Effect of slag composition on steel purity and ESR parameters [PhD Dissertation]. RWTH Aachen University; 2020.
  • Xiang D, Zhu X, Wang K, et al. Controlling metallurgical quality in a 200Ton ESR installation. In: Fu J, Zhang R, Xie X, Bioore E, editors. Proceedings of 10th international conference on vacuum metallurgy. Beijing: Metallurgical Press; 1990. p. 226–265.
  • Schwerdtfeger K, Reis R, Bruckmann G. Recent investigation on the ESR process. In: Inouye M, Hayashi C, editors. Proceedings of 7th international conference on vacuum metallurgy. Tokyo: Japan Iron and Steel Institute; 1982. p. 1204–1220.
  • Reyes-Carmona F, Mitchell A. Deoxidation of ESR slags. Proc ISIJ Int. 1992;32(4):529–537.
  • Zheng D-l, Ma G-j, Hang X, et al. Evolution of MnS and MgO Al2O3 inclusions in AISI M35 steel during electroslag remelting. J Iron Steel Res Int. 2021. DOI:10.1007/s42243-021-00698-9.
  • Wasai K, Mukai K, Miyanaga A. Observation of inclusion in aluminum deoxidized iron. ISIJ Int. 2002;42(5):459–466.
  • Poirier J, Prigent P, Bouchetou M-L. Wear mechanisms of Al2O3-MgO spinel-forming refractories used in steel ladle impact pads. Rev Métall. 2013;110:391–404.
  • Park JH, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels. ISIJ Int. 2010;50(10):1333–1346.
  • Soder M. Growth and removal of inclusions during ladle stirring [PhD dissertation]. KTH Stockholm; 2001.
  • Xuan C, Persson ES, Jensen J, et al. A novel evolution mechanism of MgAl-oxides in liquid steel: integration of chemical reaction and coalescence-collision. J Alloys Compd. 2020;812:1–13.
  • Bizyukov P. An experimental study of non-metallic inclusions precipitation and its effect on impact toughness variations in low alloy steel subjected to complex deoxidation [PhD dissertation]. University of Northern Iowa; 2017.
  • Paton BE, Medovar BI. Metallurgy of electroslag processes. Kyiv: Naukova Dumka; 1986. p. 67.
  • Paton BE, Medovar BI. Electroslag processing. Kyiv: Naukova Dumka; 1976. p. 28.
  • Mellberg P-O. Temperature distribution in slag and metal during ESR melting of ball-bearing steel. In: Nakano H, editor. Proceedings of 4th international symposium on ESR. Tokyo: Japan Iron and Steel Institute; 1973. p. 13–26.
  • Kelkar KM, Patankar SV, Mitchell A.. Computational modelling of the ESR process used for the production of ingots of high performance alloys. In: Lee PD, Mitchell A, Williamson RL, et a;, editors. Proceedings of liquid metal and casting conference. Ohio: Materials Park : ASM ; 2005. p. 137–145.
  • Choudhury A, Jauch R, Lowenkamp H. Primary structure and internal properties of conventional and electroslag melted ingots with diameters of 2000mm and 2300mm respectively. In: Kruger JG, editor. Proceedings of 5th international conference on vacuum metallurgy and electroslag remelting processes. Germany: Leybold-Heraeus GmbH & Co; 1976. p. 231–237.
  • Schneider R, Wiesinger V, Gelder S, et al. Effect of different remelting parameters on slag temperature and energy consumption during ESR. ISIJ Int. 2021.
  • Schneider RSE, Molnar M, Klosch G, et al. Effect of the Al2O3 content in the slag on the chemical reactions and nonmetallic inclusions during electroslag remelting. Metall Mater Trans B. 2020;51B:1904–1911.
  • Duan Y-r, Li B-k, Huang X-c, et al. Effect of electrode change on solidification of slag and metal pool profile in electroslag remelting process. J Iron Steel Res Int. 2021. DOI:10.1007/s42243-021-00699-8(0123456789.
  • Li S-j, Cheng G-g, Miao Z-q, et al. Kinetic analysis of aluminum and oxygen variation of G20CrNi2Mo bearing steel during industrial electroslag remelting process. ISIJ Int. 2017;57(12):2148–2156.
  • Dewsnap P, Schlatter R. Product characteristics of DC ESR steels. In: Bhat GK, Simkovitch A, editors. Proceedings of 5th international symposium on ESR. AMS USA; 1974. p. 91–115.
  • Hellman JE, Damkroger BK. The effect of process parameters on the thermal conditions during moving mold ESR. In: Mitchell A, Fernihough J, editors. Proceedings of vacuum metallurgy conference 1994. AVS USA; 1994. p. 1–21.
  • Choudhury A, Jauch R, Lowenkamp H, et al. Application of electroslag remelting process for the production of heavy turbine rotors from 12% Cr steel. In: Kruger JG, editor. Proceedings of5th international conference on vacuum metallurgy and electroslag remelting processes. Germany: Leybold-Heraeus GmbH & Co; 1976. p. 237–241.
  • Sanyo Special Steel Co, Technical Brochure. p. 8. http://www.sanyo-steel.co.jp/english/product/special_steel/images/pdf/bearing_steel_201712.pdf.
  • Franceschini A, Ruby-Meyer F, Midroit F, et al. An assessment of cleanliness techniques for low alloyed steel grades. Metall Res Technol. 2019;116:509. DOI:10.1051/metal/2018128.
  • Voronov VA, Nikitin BM, Prokhorov AN. Dissolution kinetics of magnesium spinel in CaO-Al2O3-CaF2 liquids. J Russ Metall. 1975;3:50–52.
  • Mitchell A, Kelkar K. Heat transfer in ESR slags. Ironmak Steelmak J. 2021;48:1151–1157. DOI:10.1080/03019233.2021.1948317.
  • Jiang Z, Dong Y. Solidification model for electroslag remelting process. In: Lee PD, Mitchell A, Bellot J-P, Jardy A, editors. Proceedings of 2007 international symposium on liquid metal processing and casting. Paris: SFM2; 2007. p. 89–105 .
  • Sjoqvist-Persson E. On the origin and distributions of the inclusions in production-scale ESR and PESR remelted ingots and materials from different ingot sizes and solidification structures [Ph.D. thesis]. Stockholm: KTH; 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.