Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 50, 2023 - Issue 1
636
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Application and assessment of aluminium deoxidation equilibria in liquid steel using various formalisms based on some statistical thermodynamic models

& ORCID Icon
Pages 44-54 | Received 02 Mar 2021, Accepted 23 May 2022, Published online: 15 Jun 2022

References

  • Paek MK, Jang JM, Kang YB, et al. Aluminum deoxidation equilibria in liquid iron: part I. Experimental. Metall Mater Trans B. 2015;46(4):1826–1836.
  • Rohde LE, Choudhury A, Wahlster M. Neuere untersuchungen über das aluminium-sauerstoff-gleichgewicht in eisenschmelzen. Arch Eisenhüttenwes. 1971;42(3):165–174.
  • Janke D, Fischer WA. Deoxidation equilibria of Ti, Al and Zr in Fe melts at 1600 C. Arch Eisenhüttenwes. 1976;47(4):195–198.
  • Fruehan RJ. Activities in liquid Fe–Al–O and Fe–Ti–O alloys. Metall. Trans. 1970;1:3403.
  • Suito H, Inoue H, Inoue R. Aluminium-oxygen equilibrium between CaO-Al2O3 melts and liquid iron. ISIJ Int. 1991;31(12):1381–1388.
  • Seo JD, Kim SH, Lee KR. Thermodynamic assessment of the Al deoxidation reaction in liquid iron. Steel Res. 1998;69(2):49–53.
  • Kang Y, Thunman M, Sichen D, et al. Aluminum deoxidation equilibrium of molten iron–aluminum alloy with wide aluminum composition range at 1 873 K. ISIJ Int. 2009;49(10):1483–1489.
  • Hayashi A, Uenishi T, Kandori H, et al. Aluminum deoxidation equilibrium of molten Fe–Ni alloy coexisting with alumina or hercynite. ISIJ Int. 2008;48(11):1533–1541.
  • Paek MK, Pak JJ, Kang YB. Aluminum deoxidation equilibria in liquid iron: part II. Thermodynamic modeling. Metall Mater Trans B. 2015;46(5):2224–2223.
  • Gokcen NA, Chipman J. Aluminium-oxygen equilibrium in liquid iron. Trans Metall Soc AIME. 1953;194:173.
  • d’Entremont JC, Guernsey DL, Chipman J. Aluminum-oxygen interaction in liquid iron. Trans Metall Soc AIME. 1963;227:14–17.
  • Schenck H, Steinmetz E, Mehta KK. Gleichgewicht und kinetik der ausscheidung von tonerde im system eisen—sauerstoff—aluminium bei 1600° C. Arch Eisenhüttenwes. 1970;41(2):131–138.
  • Hilty DC, Crafts W. The solubility of oxygen in liquid iron containing aluminum. Trans Metall Soc AIME. 1950;188:181.
  • Swisher JH. Note on the aluminum-oxygen interaction in liquid iron. Trans Metall Soc AIME. 1967;239:123.
  • Lesch C, Kwiaton N, Klose FB. Advanced high strength steels (AHSS) for automotive applications− tailored properties by smart microstructural adjustments. Steel Res. 2017;88:1.
  • The 19th Committee in Steelmaking. Thermodynamic data for steelmaking. Sendai: Tohoku University Press, The Japan Society for Promotion of Science (JSPS); 2010, p.10–13.
  • Yin H. Inclusion characterization and thermodynamics for high-Al advanced high strength steels. Proceeding of International Conference of AISTech 2005, Vol. 2, Warrendale, PA, 2005, 89.
  • Wagner C. Thermodynamics of alloys. Cambridge: Addison-Wesley Press, INC.; 1952. 47.
  • Lupis CHP, Elliott JF. Generalized interaction coefficients. Act Metall. 1966;14(4):529–538.
  • Lupis CHP. Chemical thermodynamics of materials. New York: North Holland; 1983.
  • Pelton AD, Bale CW. A modified interaction parameter formalism for non-dilute solutions. Metall Trans A. 1986;17(7):1211–1215.
  • Kang YB. The uniqueness of a correction to interaction parameter formalism in a thermodynamically consistent manner. Metall Mater Trans B. 2020;51(2):795–804.
  • Bale CW, Pelton AD. The unified interaction parameter formalism: thermodynamic consistency and applications. Metall Trans A. 1990;21(7):1997–2002.
  • Sigworth GK, Elliott JF. The thermodynamics of liquid dilute iron alloys. Met Sci. 1974;8(1):298–310.
  • Bouchard D, Bale CW. Thermochemical properties of iron-rich liquid solutions containing oxygen and aluminum. J Phase Equilib. 1995;16(1):16–23.
  • Jung IH, Decterov SA, Pelton AD. A thermodynamic model for deoxidation equilibria in steel. Metall Mater Trans B. 2004;35(3):493–507.
  • Fowler RH, Guggenheim EA. Statistical thermodynamics of super-lattices. Proc Royal Soc A. 1940;174:189.
  • Pelton AD, Blander M. Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach – application to silicate slags. Metall Trans B. 1986;17(4):805–815.
  • Pelton AD, Kang YB. Modeling short-range ordering in solutions. Int J Mat Res. 2007;98(10):907–917.
  • Pelton AD, Degterov SA, Eriksson G, et al. The modified quasichemical model I – binary solutions. Metall Mater Trans B. 2000;31(4):651–659.
  • Pelton AD, Chartrand P. The modified quasi-chemical model: part II. Multicomponent solutions. Metall Mater Trans A. 2001;32(6):1355–1360.
  • Pelton AD. The polynomial representation of thermodynamic properties in dilute solutions. Metall Mater Trans B. 1997;28(5):869–876.
  • Lupis CHP, Elliott JF. Prediction of enthalpy and entropy interaction coefficients by the ‘central atoms’ theory. Acta Metall. 1967;15(2):265–276.
  • Kang YB. Thermodynamic Modeling of liquid steel. ISIJ Int. 2020;60(12):2717–2730.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.