Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 50, 2023 - Issue 4
298
Views
2
CrossRef citations to date
0
Altmetric
Articles

Thermodynamic model and mechanism of non-alloyed hydrogen deoxidation of GCr15 bearing steel

, , &
Pages 360-369 | Received 28 Jun 2022, Accepted 20 Aug 2022, Published online: 05 Sep 2022

References

  • Lu L, Li W, Zhang J, et al. Acta Metallurgica Sinica. 2009;45:73. (in Chinese). DOI:10.3321/j.issn:0412-1961.2009.01.012.
  • Hashimoto K, Fujimatsu T, Tsunekage N, et al. Study of rolling contact fatigue of bearing steels in relation to various oxide inclusions. Mater Des. 2011;32:1605–1611. DOI:10.1016/j.matdes.2010.08.052.
  • Costa E Silva ALVD. The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications. J Mater Res Technol. 2019;8:2408–2422. DOI:10.1016/j.jmrt.2019.01.009.
  • Hashimoto K, Fujimatsu T, Tsunekage N, et al. Mater Eng. 2011;32:4980. DOI:10.1016/j.matdes.2011.06.056.
  • Melander A, Gustavsson A. An FEM study of driving forces of short cracks at inclusions in hard steels. Int J Fatigue. 1996;18:389–399. DOI:10.1016/0142-1123(96)00069-2.
  • Walker PFF. Improving the reliability of highly loaded rolling bearings: the effect of upstream processing on inclusions. Mater Sci Technol. 2014;30:385–410. DOI:10.1179/1743284713Y.0000000491.
  • Gu C, Liu W, Lian J, et al. In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels. Int J Miner Metall Mater. 2021;28:826–834. DOI:10.1007/s12613-020-2223-9.
  • Gu C, Bao Y, Gan P, et al. Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime. Int J Miner Metall Mater. 2018;25:623–629. DOI:10.1007/s12613-018-1609-4.
  • Liang Y, Guo-Guang C. Characteristics of Al2O3, MnS, and TiN inclusions in the remelting process of bearing steel. Int J Miner Metall Mater. 2017;24:869–875. DOI:10.1007/s12613-017-1472-8.
  • Moghaddam SM, Sadeghi F. A review of microstructural alterations around nonmetallic inclusions in bearing steel during rolling contact fatigue. Tribol Trans. 2016;59:1142–1156. DOI:10.1080/10402004.2016.1141447.
  • Xiao W, Bao Y, Gu C, et al. Ultrahigh cycle fatigue fracture mechanism of high-quality bearing steel obtained through different deoxidation methods. Int J Miner Metall Mater. 2021;28:804–815. DOI:10.1007/s12613-021-2253-y.
  • Wu H, Li Q, Wei C, et al. Study on the behaviour of DS-class inclusions in advanced bearing steel. Metall Res Technol. 2019;116:223. DOI:10.1051/metal/2018096.
  • Cheng G, Zhang L, Ren Y. Characterization and evolution of non-metallic inclusions in GCr15 bearing steels during cooling and solidification. Ironmak Steelmak. 2020;47:1217–1225. DOI:10.1080/03019233.2020.1719315.
  • Zhang Y, Cheng G, Wang J, et al. Steel Res Int. 2021: 2100445. DOI:10.1002/srin.202100445.
  • Zhu M, Deng Y. Acta Metaliurgica Sinica. 2022;58:28, (in chinese). DOI:10.11900/0412.1961.2021.00227.
  • Gu C, Wang M, Bao Y, et al. Quantitative analysis of inclusion engineering on the fatigue property improvement of bearing steel. Metals (Basel). 2019;9:476. DOI:10.3390/met9040476.
  • Xiao W, Wang M, Bao Y. The research of low-oxygen control and oxygen behavior during RH process in silicon-deoxidization bearing steel. Metals (Basel). 2019;9:812. DOI:10.3390/met9080812.
  • Zhang H, Bao L, Chen Y, et al. Efficiency improvements of the CO-H2 mixed gas utilization related to the molten copper slag reducing modification. Process Saf Environ Prot. 2021;146:292–299. DOI:10.1016/j.psep.2020.09.011.
  • Zhang H, Li B, Wei Y, et al. Nonisothermal reduction kinetics in the Fe-Cu-O system using H2. JOM (1989). 2019;71:1813–1821. DOI:10.1007/s11837-019-03402-1.
  • Huaiwei Z, Xiaoyan S, Bo Z, et al. Reduction of molten copper slags with mixed CO-CH4-Ar Gas. Metall Mater Trans B, Process Metallurgy and Materials Processing Science. 2014;45:582–589. DOI:10.1007/s11663-013-9981-y.
  • Su Y, Wang L, Luo L, et al. Deoxidation of titanium alloy using hydrogen. Int J Hydrogen Energy. 2009;34:8958–8963. DOI:10.1016/j.ijhydene.2009.08.053.
  • Makarov MA, Aleksandrov AA, Dashevskii VY. Behavior of carbon, oxygen, and sulfur during hydrogen blowing of liquid steel. Russ Metall Met. 2009;2009: 95–99. DOI:10.1134/S0036029509020013.
  • Makarov MA, Aleksandrov AA, Dashevskii VY. Deep decarburization of steel. Russ Metall Met. 2006: 189–192. DOI:10.1134/S0036029506030013.
  • Yamaguchi K, Sakuraya T, Hamagami K. Kawasaki Steel Tech Rep. 1995;32:33.
  • Guo X, Yu J, Zhang Y, et al. Deep deoxidization from liquid iron by hydrogen plasma arc melting. Int J Hydrogen Energy. 2018;43:12153–12157. DOI:10.1016/j.ijhydene.2018.04.035.
  • Zhang Y, Kong Y, Guo X, et al. Mod Phys Lett B. 2021;35. DOI:10.1142/S021798492050030X.
  • Guo X, Yu J, Zhang Y, et al. Mechanism of desulfurization from liquid iron by hydrogen plasma Arc melting. Metall Mater Trans B, Process Metallurgy and Materials Processing Science. 2018;49:2951–2955. DOI:10.1007/s11663-018-1345-1.
  • Xing W. Study on deoxidation by hydrogen and natural gas in molten steel. Wuhan University of Science and Technology. Doctor. (in chinese). 2009. DOI:10.7666/d.y1546305.
  • Masahiro K, Takahiko M, Toshihide T, et al. Emulsion type rolling oil with high performance for friction pickup in high speed cold rolling. Tetsu-to-Hagane. 2004;90:128–133. DOI:10.2355/tetsutohagane1955.90.6_422.
  • Makarov MA, Aleksandrov AA, Dashevskii VY. Deep decarburization of iron-based melts. Russ Metall Met. 2007;2007:91–97. DOI:10.1134/S0036029507020012.
  • Averin VV, Polyakov AY, Samarin AM. Activity of Oxygen in Liquid Iron. NaukSSSR, Ser.Met. 1955;3:90.
  • Ito K, Sano K. Kinetic studies on the deoxidation of molten iron by hydrogen gas. J Jpn Inst Metals Materials. 1965;29:626–630.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.