Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 49, 2022 - Issue 10
376
Views
0
CrossRef citations to date
0
Altmetric
Articles

Survey on the electric arc furnace and ladle furnace electric system

ORCID Icon & ORCID Icon
Pages 976-994 | Received 19 Feb 2022, Accepted 19 Sep 2022, Published online: 10 Oct 2022

References

  • World Steel Association. 2020 world steel in figures. 2020.
  • World Steel Association. Overview of the steelmaking process. 2020.
  • EPE. Anuário Estatístico de Energia Elétrica 2019, ano base 2018. 2019.
  • BNDES. Sustentabilidade da siderurgia brasileira: eficiência energética, emissões e competitividade. Setorial. 2015;41:181–236.
  • Zhang Z, Fahmi NR, Norris WT. Flicker analysis and methods for electric arc furnace flicker (EAF) mitigation (a survey). 2001 IEEE Porto Power Tech Proceedings (Cat. No. 01EX502). Vol. 1. Porto: IEEE; 2001.
  • Guan JL, Gu JC, Yang MT, et al. New assessment and prediction for arc furnace flicker. 2006 IEEE Power Engineering Society General Meeting. Montreal, QC: IEEE; 2006.
  • Bhonsle DC, Kelkar RB. Analyzing power quality issues in electric arc furnace by modeling. Energy. 2016;115:830–839.
  • Singh A, Singh RK, Singh AK. Power quality issues of electric arc furnace and their mitigations – a review. Int J Adv Eng Res Sci. 2017;4(4):237114.
  • Ries W. Fornos a arco: análise e projeto de sistema elétrico. Porto Alegre: EDIPUCRS; 2001, 208 p.
  • Mendis SR, Gonzalez DA. Harmonic and transient overvoltage analyses in arc furnace power systems. IEEE Trans Ind Appl. 1992;28(2):336–342.
  • Teklić AT, Periša I, Škrlec D. Impact of the new electric arc furnace on the level of flicker in surrounding transmission and distribution power system. Measurements. 2013;36:6.
  • Maksić M, Matvoz D, Kosmač J, et al. Circuit breaker switching transients at arc furnace installation. Proceedings of International Conference on Power Systems Transients (IPST2009), Kyoto, Japan, June 2009.
  • El-Bages MS, Abd-Allah MA, Elyan T, et al. Overvoltage transient analysis of vacuum circuit breaker switched arc furnace installation. Int J Sci Res Pub. 2015;5:675.
  • Gustavsson SR, Lundqvist B. Transient overvoltages in arc-furnace installations with vacuum switches. ASEA; 1976.
  • Santos ME, Santos MIC, Onofri VC. Performance analysis of the RC clampers in switching off no load arc furnace transformers. IEEE PES T&D 2010. New Orleans, LA: IEEE; 2010.
  • Moghaddami M, Moghadasi A, Sarwat AI. An algorithm for fast calculation of short circuit forces in high current busbars of electric arc furnace transformers based on method of images. Electr Power Syst Res. 2016;136:173–180.
  • Wagner VE, Balda JC, Griffith DC, et al. Effects of harmonics on equipment. IEEE Trans Power Delivery. 1993;8(2):672–680.
  • Singh GK. Power system harmonics research: a survey. Eur Trans Electr Power. 2009;19(2):151–172.
  • Bhonsle DC, Zaveri NK, Kelkar RB. Harmonic survey of typical non-linear loads. The International Conference on Electrical Engineering, Okinawa, Japan. 2008.
  • Seker M, Memmedov A, Huseyinov R, et al. Power quality measurement and analysis in electric arc furnace for Turkish electricity transmission system. Elektron Elektrotech. 2017;23(6):25–33.
  • Elnady A, Salama MMA. A novel mitigation strategy for voltage fluctuations produced by arc furnace. CCECE 2003 – Canadian Conference on Electrical and Computer Engineering. Toward a Caring and Humane Technology (Cat. No. 03CH37436). Vol. 1. Montreal, QC: IEEE; 2003.
  • Silsupur M, Turkay BE. Determination of flicker contribution level by using proposed index. Elektron Elektrotech. 2018;24(2):18–26.
  • Silva A, Hultqvist L, Wilk-Wilczynski A. Steel plant performance, power supply system design and power quality aspects. 54th Electric Furnace Conference, Dallas, USA. 1996.
  • Del Vecchio RM, Poulin B, Feghali PT, et al. Transformer design principles: with applications to core-form power transformers. CRC Press; 2010.
  • ABM. Fusão em Fornos Elétricos – Princípios de Funcionamentos de Fornos Elétricos: Forno a Arco Direto, a Arco Indireto, a Resistência; Forno a Indução e Forno Especiais Processo Duplex e Triplex, 10ª edição. Associação Brasileira de Metais – Fundição; 1978.
  • de Andrade AD. Sobretensões devidas à operação dos fornos elétricos a arco. Proteção dos equipamentos principais. 1989.
  • Heathcote MJ. The J & P transformer book: a practical technology of the power transformer. Newnes; 1998.
  • Pacific Crest Transformers. Electric arc furnaces. 2013.
  • Ramos RA. Otimização do Processo de Fusão e Refino Primário através de Análises Estatísticas de Parâmetros Elétricos e de Processos em Forno Elétrica a Arco. Dissertação de Mestrado submetida ao Programa de Pós-Graduação em Engenharia e Ciência de Materiais da Universidade Federal do Ceará; 2019.
  • Rossi D. Influência da proporção entre as vazões de oxigênio e gás natural do sistema de injeção na eficiência energética de um forno elétrico a arco. 2014.
  • Jones JA, Bowman B, Lefrank PA. Electric furnace steelmaking. In: The making, shaping and treating of steel. 1st ed. 1998.
  • Yuasa G, Yajima T, Ukai A, et al. Refining practice and application of the ladle furnace (LF) process in Japan. Trans Iron Steel Inst Japan. 1984;24(5):412–418.
  • Silva JNS. Siderurgia. Belém/Santa Maria: IFPA/UFSM; 2011.
  • Instituto Aço Brasil. A Indústria do Aço no Brasil. 2017.
  • World Steel Association. 2020. Available from: https://www.worldsteel.org/about-steel/steel-facts.html.
  • CRU. A global perspective on decarbonisation policies and impacts on the steel industry. 2021.
  • World Steel Association. Energy use in the steel industry. 2014.
  • Primetals. 2018. Available from: https://www.primetals.com/pt/imprensa-midia/noticias/acciaieria-arvedi-issues-final-acceptance-certificate-for- electric-arc-furnace-from-primetals-technologies.
  • Cardoso JJ. Eletrotermia – Fornos Elétricos a Arco. Ouro Preto: Universidade Federal de Ouro Preto, Escola de Minas; 1987.
  • Carvalho EBd. Otimização da operação de fornos eletricos de arco direto. 1998.
  • Inteco GMBH. Have one eye on Ladle Furnance. 2012.
  • Cano-Plata EA, Ustariz-Farfan AJ, Soto-Marin OJ. Electric arc furnace model in distribution systems. IEEE Trans Ind Appl. 2015;51(5):4313–4320.
  • White RS, Dionise TJ, Baron JA. Design, analysis, and operation of the electrical distribution system for a modern electric arc furnace and ladle melt furnace. IEEE Trans Ind Appl. 2010;46(6):2267–2275.
  • Cundeva S, Digalovski M. Electric arc furnace transformer secondary circuit calculations. Serb J Electr Eng. 2019;16(2):181–193.
  • IEEE. Recommended practice and requirements for harmonic control in electric power systems. IEEE Std 519-2014 (Revision of IEEE Std 519-1992); 2014 June 11; p. 1–29, doi: 10.1109/IEEESTD.2014.6826459.
  • Gerçek CÖ, Ermis M, Ertas A, et al. Design, implementation, and operation of a new C-type 2nd harmonic filter for electric arc and ladle furnaces. IEEE Trans Ind Appl. 2011;47(4):1545–1557.
  • Esfahani MT, Vahidi B. A new stochastic model of electric arc furnace based on hidden Markov model: a study of its effects on the power system. IEEE Trans Power Delivery. 2012;27(4):1893–1901.
  • Uz-Logoglu E, Salor O, Ermis M. Real-time detection of interharmonics and harmonics of AC electric arc furnaces on GPU framework. IEEE Trans Ind Appl. 2019;55(6):6613–6623.
  • Asban MR, Aghaei J, Niknam T, et al. Designing static var compensator capacity to enhance power quality in electric arc furnaces. Simulation. 2017;93(6):515–525.
  • Van der Sluis L. Transients in power systems. John Wiley & Sons Ltd; 2001.
  • Grigsby LL, editor. The electric power engineering handbook-five volume set. CRC Press; 2018.
  • Popov M, Acha E. Overvoltages due to switching off an unloaded transformer with a vacuum circuit breaker. IEEE Trans Power Delivery. 1999;14(4):1317–1326.
  • Faranda R, Giussani M, Testin G. RC filter to protect industrial arc furnace transformers during switching–off. International Conference on Energy & Environment (EE'07), Portoroz, Slovenia. 2007.
  • Vollet C, de Metz-Noblat B. Vacuum circuit breaker model: application case to motors switching. Proceedings of the International Conference on Power Systems Transients (IPST’07). 2007.
  • Oliveira JC, Souto OCN, Vilaça A LA. A real case of current chopping overvoltage. IPST’99 – International Conference of Power System Transient, June 20–24; 1999, Budapest, Hungary.
  • Garzon RD. High voltage circuit breakers: design and applications. CRC Press; 2002.
  • Craenenbroeck, TV, Herdt, HD, de Ceuster, J, et al. Detailed study of fast transient phenomena in transformers and substations leading to an improved system design; 1999.
  • Shipp DD, Dionise TJ, Lorch V, et al. Vacuum circuit breaker transients during switching of an LMF transformer. IEEE Trans Ind Appl. 2011;48(1):37–44.
  • Lastra RB, Barbieri M. Fast transients in the operation of an induction motor with vacuum switches. International Conference on Power Systems Transients IPST, Rio de Janeiro, Brazil. 2001.
  • Vacuum Electric Switch Co. Vacuum electric switch catalog. 2014 October 14.
  • Ferracci P. Ferroresonance. Cahier Technique, Group Schneider; 1998.
  • Santoso S, Dugan RC, Grebe TE, et al. Modeling ferroresonance phenomena in an underground distribution system. IEEE IPST. 2001;1:1–6.
  • Valverde V, Mazón AJ, Zamora I, et al. Ferroresonance in voltage transformers: analysis and simulations. International Conference on Renewable Energies and Power Quality (ICREPQ'13), Bilbau, Spain; 2007.
  • Buigues G, Zamora I, Valverde V, et al. Ferroresonance in three-phase power distribution transformers: sources, consequences and prevention. 19th International Conference on Electricity Distribution, Vienna; 2007.
  • Pereira MP. Ressonância e ferrorressonância em sistemas elétricos. Revista Iberoamericana do ATP. 2000;2(4).
  • Electricity Training Association. Power system protection: systems and methods. Vol. 2. London: IET; 1995.
  • Balan R, Maties V, Hancu O, et al. Simulation of an electric arc furnace electrode position system. Annals of DAAAM & Proceedings. 2007; p. 49–51.
  • Cheema MAM, Fletcher JE, Dorrell D, et al. A novel approach to investigate the quantitative impact of harmonic currents on winding losses and short circuit forces in a furnace transformer. IEEE Trans Magn. 2013;49(5):2025–2028.
  • Kladas AG, Papadopoulos MP, Tegopoulos JA. Leakage flux and force calculation on power transformer windings under short-circuit: 2D and 3D models based on the theory of images and the finite element method compared to measurements. IEEE Trans Magn. 1994;30(5):3487–3490.
  • Salon S, LaMattina B, Sivasubramaniam K. Comparison of assumptions in computation of short circuit forces in transformers. IEEE Trans Magnet. 2000;36(5):3521–3523.
  • Wang H, Butler KL. Modeling transformers with internal incipient faults. IEEE Trans Power Delivery. 2002;17(2):500–509.
  • Abed NY, Mohammed OA. Modeling and characterization of transformers internal faults using finite element and discrete wavelet transforms. IEEE Trans Magnet. 2007;43(4):1425–1428.
  • Kumbhar GB, Kulkarni SV. Analysis of short-circuit performance of split-winding transformer using coupled field-circuit approach. IEEE Trans Power Delivery. 2007;22(2):936–943.
  • Ahmad A, Javed I, Nazar W, et al. Short circuit stress analysis using FEM in power transformer on HV winding displaced vertically & horizontally. Alexandria Eng J. 2018;57(1):147–157.
  • Bello JR. Fundamentals of the electric arc furnace. 1971.
  • ABB. PRODUCT BROCHURE – Joslyn Hi-Voltage® – Transmaster® VBT electric arc furnace switch. 2018.
  • MITSUBISHI ELECTRIC. Mitsubishi vacuum interrupters – high reability. 2014.
  • Renz R, Gentsch D, Fink H, et al. Vacuum interrupters-sealed for life. CIRED-19th International Conference on Electricity Distribution. No. 0156. 2007.
  • Vacuum Electric Switch Co. Vacuum electric switch new replacement VBU module. 2020 May 19.
  • Bianco A, Brewer B, Štefanka M, et al. High performance smart MV apparatus for arc furnace applications. 2019.
  • Testa M, Bertolotto P, Pagnoncelli D, et al. Towards smart digital circuit breakers enabling advanced control and diagnostic features. 2019.
  • Siemens. 3AH4 vacuum circuit-breakers – Catalog HG 11.04, August 2010.
  • Schneider Electric. VXC high – indoor vacuum circuit breaker for high ratings up to 75,000 operating cycles. 2011.
  • Toshiba. The VJB series – high frequency switching type vacuum circuit breaker for arc furnaces. 2016.
  • Thomas & Betts. Transmaster® VBT electric arc furnace switch. 2017.
  • Siemens. 3AH4 arc furnace circuit breaker. 2018.
  • Cardoso MMG. Reator série chaveado por tiristores para fornos elétricos a arco. 2006.
  • Pires IA, Cardoso MMG, Cardoso Filho BJ. An active series reactor for an electric arc furnace: a flexible alternative for power-flow control. IEEE Ind Appl Mag. 2016;22(5):53–62.
  • Akdag A, Çadirci I, Nalcaci E, et al. Effects of main transformer replacement on the performance of an electric arc furnace system. IEEE Trans Ind Appl. 2000;36(2):649–658.
  • Trench. 2021. Available from: https://trench-group.com/products/air-core-series-reactors/.
  • Samet H, Ghanbari T, Ghaisari J. Maximizing the transferred power to electric arc furnace for having maximum production. Energy. 2014;72:752–759.
  • Samet H, Ghanbari T, Ghaisari J. Maximum performance of electric arc furnace by optimal setting of the series reactor and transformer taps using a nonlinear model. IEEE Trans Power Delivery. 2015;30(2):764–772.
  • Qual-Tech Engineers, Inc. Surge protection of arc furnace transformers. 2000.
  • Popov M, Van der Sluis L, Paap GC. Application of a new surge arrester model in protection studies concerning switching surges. IEEE Power Eng Rev. 2002;22(9):52–53.
  • Thomas & Betts. Joslyn hi-voltage® capacitor switches. 2018.
  • Marchi B, Zanoni S, Mazzoldi L, et al. Energy efficient EAF transformer – a holistic life cycle cost approach. Procedia CIRP. 2016;48:319–324.
  • Marchi B, Zanoni S, Mazzoldi L, et al. Product-service system for sustainable EAF transformers: real operation conditions and maintenance impacts on the life-cycle cost. Procedia CIRP. 2016;47:72–77.
  • GE Grid Solutions. Arc furnace power transformers. 2018.
  • ABB. Special transformers – furnace and rectifier transformers. 2012.
  • Tamini Transformatori. Arc furnace transformer electrical parameters definition, design and maintenance. 2017.
  • Moghaddami M, Sarwat AI. Effective magnetic shielding in electric arc furnace transformers using interphase wall shunts. 2017 IEEE International Electric Machines and Drives Conference (IEMDC). IEEE; 2017.
  • Maschinenfabrik Reinhausen GmbH. Steel production – MR solutions for your efficient steel production. 2015.
  • Teranishi T, Ebisawa Y, Yanari T, et al. An approach to suppressing resonance voltage in transformer tap windings. IEEE Trans Power Appar Syst. 1983;8:2552–2558.
  • Stojčić B, Miljavec D. Current distribution in the low-voltage winding of the furnace transformer. Int J Electr Power Energy Syst. 2012;43(1):1251–1258.
  • Gilvanejad M, Vahedi A. Modeling the frequency response of power transformer by means of time domain variable frequency models. Proceedings of the 2006 Australasian Universities Power Engineering Conference. Victoria University; 2006.
  • Abu-Elanien AE, Salama MMA. Survey on the transformer condition monitoring. 2007 Large Engineering Systems Conference on Power Engineering. Montreal, QC: IEEE; 2007.
  • IEEE standard test code for liquid-immersed distribution, power, and regulating transformers. IEEE Standard C57.12.90; 2015.
  • IEEE guide for the application and interpretation of frequency response analysis for oil-immersed transformers. IEEE Standard C57.149; 2012.
  • IEEE guide for diagnostic field testing of fluid-filled power transformers, regulators, and reactors. IEEE Standard C57.152; 2013.
  • IEEE guide for the interpretation of gases generated in oil-immersed transformers. IEEE Standard C57.104; 2008.
  • IEEE recommended practice for partial discharge measurement in liquid-filled power transformer and shunt reactors. IEEE Standard C57.113; 2010.
  • IEEE standard general requirements and test procedure for power apparatus bushings. IEEE Standard C57.19.00; 2004.
  • IEEE recommended practice for performing temperature rise tests on oil-immersed power transformers at loads beyond nameplate ratings. IEEE Standard C57.119; 2001.
  • IEC 60076-1-14. Power transformers – part 1–14: testing and measurement techniques and design specifications.
  • Cano-Plata EA, Soto-Marin OJ, Ustariz-Farfan AJ. Life assessment of electric arc furnace transformers. IEEE Trans Ind Appl. July–Aug 2017;53(4):4125–4135. doi:10.1109/TIA.2017.2688408.
  • Deckmann SK, Rabelo GF. A quality index based on voltage flicker and distortion evaluations. Proceedings of APEC 97-Applied Power Electronics Conference. Vol. 1. IEEE; 1997.
  • IEEE standard requirements for arc furnace transformers. IEEE Std C57.17-2012; 2013 Feb 7; p. 1–55. doi:10.1109/IEEESTD.2013.6458970.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.