Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 50, 2023 - Issue 7
345
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effect of Ce on inclusion, microstructure and mechanical properties of Al-killed high-strength steel

ORCID Icon, &
Pages 744-756 | Received 25 Oct 2022, Accepted 26 Dec 2022, Published online: 23 Jan 2023

References

  • Nathan SR, Balasubramanian V, Malarvizhi S, et al. Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints. Def Technol. 2015;11:308–317. DOI:10.1016/j.dt.2015.06.001
  • Oyyaravelu R, Kuppan P, Arivazhagan N. Metallurgical and mechanical properties of laser welded high strength low alloy steel. J Adv Res. 2016;7:463–472. DOI:10.1016/j.jare.2016.03.005
  • Mirzaei M, Jeshvaghani RA, Yazdipour A, et al. Study of welding velocity and pulse frequency on microstructure and mechanical properties of pulsed gas metal arc welded high strength low alloy steel. Mater Design. 2013;51:709–713. DOI:10.1016/j.matdes.2013.04.077
  • Wei LY, Nelson TW. Influence of heat input on post weld microstructure and mechanical properties of friction stir welded HSLA-65 steel. Mat Sci Eng A. 2012;556:51–59. DOI:10.1016/j.msea.2012.06.057
  • Hwang B, Lee CG, Kim SJ. Low-temperature toughening mechanism in thermomechanically processed high-strength low-alloy steels. Metall Mater Trans A. 2011;42:717–728. DOI:10.1007/s11661-010-0448-3
  • Yan ZJ, Liu K, Eckert J. Effect of tempering and deep cryogenic treatment on microstructure and mechanical properties of Cr–Mo–V–Ni steel. Mat Sci Eng A. 2020;787:139520, DOI:10.1016/j.msea.2020.139520
  • He BB, Hu B, Yen HW, et al. High dislocation density–induced large ductility in deformed and partitioned steels. Science. 2017;357:1029–1032. DOI:10.1126/science.aan0177
  • Yang J, Wang XH, Jiang M, et al. Effect of calcium treatment on non-metallic inclusions in ultra-low oxygen steel refined by high basicity high Al2O3 slag. J Iron Steel Res Int. 2011;18:8–14. DOI:10.1016/S1006-706X(11)60083-6
  • Wang R, Bao YP, Yan ZJ, et al. Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets. Int J Min Met Mater. 2019;26:178–185. DOI:10.1007/s12613-019-1722-z
  • Wang H, Li J, Shi CB, et al. Evolution of Al2O3 inclusions by magnesium treatment in H13 hot work die steel. Ironmak Steelmak. 2017;44:128–133. DOI:10.1080/03019233.2016.1165498
  • Li B, Zhu HY, Zhao JX, et al. Effect of rare-earth La on inclusion evolution in high-Al steel. Steel Res Int. 2022;93:2100347, DOI:10.1002/srin.202100347
  • Li H, Yu YC, Ren X, et al. Evolution of Al2O3 inclusions by cerium treatment in low carbon high manganese steel. J Iron Steel Res Int. 2017;24:925–934. DOI:10.1016/S1006-706X(17)30135-8
  • Gao S, Wang M, Guo JL, et al. Characterization transformation of inclusions using rare earth Ce treatment on Al-killed titanium alloyed interstitial free steel. Steel Res Int. 2019;90:1900194. DOI:10.1002/srin.201900194
  • Liu DF, Qin J, Zhang YH, et al. Effect of yttrium addition on the hot deformation behavior of Fe–6.5 wt% Si alloy. Mat Sci Eng A. 2020;797:140238, DOI:10.1016/j.msea.2020.140238
  • Dong FT, Venezuela J, Li HX, et al. Effect of vanadium and rare earth microalloying on the hydrogen embrittlement susceptibility of a Fe-18Mn-0.6C TWIP steel studied using the linearly increasing stress test. Corros Sci. 2021;185:109440. DOI:10.1016/j.corsci.2021.109440
  • Jiang ZH, Wang P, Li DZ, et al. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels. J Mater Sci Technol. 2020;45:1–14. DOI:10.1016/j.jmst.2019.03.012
  • Torkamani H, Raygan S, Mateo CG, et al. Contributions of rare earth element (La, Ce) addition to the impact toughness of low carbon cast niobium microalloyed steels. Met Mater Int. 2018;24:773–788. DOI:10.1007/s12540-018-0084-9
  • Hamidzadeh MA, Meratian M, Saatchi A. Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel. Mat Sci Eng A. 2013;571:193–198. DOI:10.1016/j.msea.2013.01.074
  • Li X, Jiang ZH, Geng X, et al. Effect of rare earth-magnesium alloy on inclusion evolution in industrial production of die steel. Steel Res Int. 2019;90:1900103. DOI:10.1002/srin.201900103
  • Jiang MZ, Yu YC, Li H, et al. Effect of rare earth cerium addition on microstructures and mechanical properties of low carbon high manganese steels. High Temp Mater Proc. 2017;36:145–153. DOI:10.1515/htmp-2015-0183
  • Liu XJ, Yang JC, Zhang F, et al. Experimental and DFT study on cerium inclusions in clean steels. J Rare Earth. 2021;39:477–486. DOI:10.1016/j.jre.2020.07.021
  • Ren Q, Zhang LF. Effect of cerium content on inclusions in an ultra-low-carbon aluminum-killed steel. Metall Mater Trans B. 2020;51:589–600. DOI:10.1007/s11663-020-01779-y
  • Xu KD, Ren ZM, Li CJ. Progress in application of rare metals in superalloys. Rare Met. 2014;33:111–126. DOI:10.1007/s12598-014-0256-9
  • Zhu JN, Lian XT, Lu HC, et al. Effects of rare earth elements (Ce, La) on microstructure and mechanical properties in compacted graphite iron. Philos Mag. 2021;101:354–368. DOI:10.1080/14786435.2020.1837406
  • Lian XT, Zhu JN, Dong H, et al. Effects of micro-alloying elements on microstructure, element distribution and mechanical properties in gray irons. Int J Metalcast. 2020;14:1025–1032. DOI:10.1007/s40962-019-00402-4
  • Liang YL, Yi YL, Long SL, et al. Effect of rare earth elements on isothermal transformation kinetics in Si-Mn-Mo bainite steels. J Mater Eng Perform. 2014;23:4251–4258. DOI:10.1007/s11665-014-1181-7
  • Ji YP, Ren HP, Liu XH, et al. Effect of rare earth on super-cooled austenite transformation of 20MnCrNi2Mo wear-resistant cast steel and its mechanism. Rare Metal Mat Eng. 2017;46:997–1002.
  • Yakubtsov IA, Boyd JD. Bainite transformation during continuous cooling of low carbon microalloyed steel. Mater Sci Tech. 2001;17:296–301. DOI:10.1179/026708301773002491
  • Li H, McLean A, Rutter JW, et al. Influence of rare earth metals on the nucleation and solidification behavior of iron and 1045 steel. Metall Mater Trans B. 1988;19:383–395. DOI:10.1007/BF02657736
  • Ji YP, Zhang MX, Ren HP. Roles of lanthanum and cerium in grain refinement of steels during solidification. Metals. 2018;8:884, DOI:10.3390/met8110884
  • Hu J, Du LX, Wang JJ, et al. Effect of welding heat input on microstructures and toughness in simulated CGHAZ of V–N high strength steel. Mater Sci Eng A. 2013;577:161–168. DOI:10.1016/j.msea.2013.04.044
  • Zhao YY, Wang JF, Zhou S, et al. Effects of rare earth addition on microstructure and mechanical properties of a Fe-15Mn-1.5 Al-0.6 C TWIP steel. Mater Sci Eng A. 2014;608:106–113. DOI:10.1016/j.msea.2014.04.084
  • Qu W, Ren HP, Jin ZL, et al. Effect of lanthanum on the microstructure and impact toughness of HSLA steel. Rare Metal Mat Eng. 2018;47:2087–2092.
  • Razmpoosh MH, Macwan A, Goodwin F, et al. Suppression of liquid-metal-embrittlement by twin-induced grain boundary engineering approach. Mater. 2020;11:100668. DOI:10.1016/j.mtla.2020.100668
  • Li XH, Liu YC, Gan KF, et al. Acquiring a low yield ratio well synchronized with enhanced strength of HSLA pipeline steels through adjusting multiple-phase microstructures. Mater Sci Eng A. 2020;785:139350. DOI:10.1016/j.msea.2020.139350
  • Cai GJ, Li CS. Effects of Ce on inclusions, microstructure, mechanical properties, and corrosion behavior of AISI 202 stainless steel. J Mater Eng Perform. 2015;24:3989–4009. DOI:10.1007/s11665-015-1651-6
  • Xie ZJ, Ma XP, Shang CJ, et al. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel. Mater Sci Eng A. 2015;641:37–44. DOI:10.1016/j.msea.2015.05.101
  • Li XD, Fan YR, Ma XP, et al. Influence of martensite–austenite constituents formed at different intercritical temperatures on toughness. Mater Design. 2015;67:457–463. DOI:10.1016/j.matdes.2014.10.028
  • Gao JZ, Fu PX, Liu HW, et al. Effects of rare earth on the microstructure and impact toughness of H13 steel. Metals (Basel). 2015;5:383–394. DOI:10.3390/met5010383
  • Kobayashi S, Tsurekawa S, Watanabe T. Grain boundary hardening and triple junction hardening in polycrystalline molybdenum. Acta Mater. 2005;53:1051–1057. DOI:10.1016/j.actamat.2004.11.002
  • Watanabe T, Tsurekawa S. Toughening of brittle materials by grain boundary engineering. Mater Sci Eng A. 2004;387:447–455. DOI:10.1016/j.msea.2004.01.140

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.