Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 50, 2023 - Issue 8
251
Views
0
CrossRef citations to date
0
Altmetric
Articles

Optimization of high alumina slag practice in blast furnace ironmaking: an industrial approach (PART 1: fundamental aspects)

ORCID Icon, , , , , , & show all
Pages 1124-1137 | Received 22 Jan 2023, Accepted 02 May 2023, Published online: 19 May 2023

References

  • Ahmed H. New trends in the application of carbon-bearing materials in blast furnace iron-making. Minerals. 2018;8(12):561.
  • Mousa E. Modern blast furnace ironmaking technology: potentials to meet the demand of high hot metal production and lower energy consumption. Metall Mater Eng. 2019;25(2):69–104.
  • World Steel Association. (2022). Home. https://www.worldsteel.org/.
  • Srivastava S, Chikhale M. Challenges of Indian iron ore industry – geology, mining and processing perspective, p. 812–827. In: 43°.
  • Sadarang J, Nayak RK, Panigrahi I. Challenges and future prospective of alternative materials to silica sand for green sand mould casting: a review. Trans Indian Inst Met. 2021;74(12):2939–2952.
  • Smith MP. Blast furnace ironmaking–a view on future developments. Procedia Eng. 2017;174:19–28.
  • Mukherjee K, Prakash S. On dependence of high temperature rheological behaviour of blast furnace slag on its network structure. IFAC Proc Vol. 2013;46(16):312–320.
  • Rachappa S, Prakash Y. Iron ore recovery from low grade by using advance methods. Proc Earth Planet Sci. 2015;11:195–197.
  • Duffy JA, Ingram MD, Sommerville ID. Acid–base properties of molten oxides and metallurgical slags. J Chem Soc Faraday Trans 1: Phys Chem Condens Phases. 1978;74:1410–1419.
  • Min DJ, Tsukihashi F. Recent advances in understanding physical properties of metallurgical slags. Met Mater Int. 2017;23(1):1–19.
  • Ivanov O, Savov L, Janke D. Alkali capacity and physical properties of blast furnace type slags. Steel Res Int. 2004;75(7):433–441.
  • Siddique R, Cachim P. Waste and supplementary cementitious materials in concrete: characterisation, properties and applications. Cambridge (UK): Woodhead Publishing; 2018.
  • Nishioka K, Fujiwara D, Ohno KI, et al. Modeling of dripping behavior in particles packed bed filled with immiscible fluid. ISIJ Int. 2010;50(7):1016–1022.
  • Sunahara K, Nakano K, Hoshi M, et al. Effect of high Al2O3 slag on the blast furnace operations. ISIJ Int. 2008;48(4):420–429.
  • Kim H, Ozturk B, F RJ. Slag-metal separation in the blast furnace trough. ISIJ Int. 1998;38(5):430–439.
  • Shao L, Xiao Q, Zhang C, et al. Dead-man behavior in the blast furnace hearth—a brief review. Processes. 2020;8(11):1335.
  • Kondratiev A, Jak E, Hayes PC. Predicting slag viscosities in metallurgical systems. Jom. 2002;54(11):41–45.
  • Lee YS, Min DJ, Jung SM, et al. Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO. ISIJ Int. 2004;44(8):1283–1290.
  • Han C, Chen M, Zhang W, et al. Viscosity model for iron blast furnace slags in SiO2–Al2O3–CaO–MgO system. Steel Res Int. 2015;86(6):678–685.
  • Saito N, Hori N, Nakashima K, et al. Viscosity of blast furnace type slags. Metall Mater Trans B. 2003;34(5):509–516.
  • Sahoo SK, Tiwari JN, Mishra B, et al. Prediction of flow characteristics of Al2O3–CaO–MgO–SiO2–TiO2-type blast furnace slag and Its evaluation. Arab J Sci Eng. 2019;44(7):6393–6401.
  • Dienes GJ. Activation energy for viscous flow and short-range order. J Appl Phys. 1953;24(6):779–782.
  • Deng L, Zhang X, Zhang M, et al. Effect of CaF2 on viscosity, structure and properties of CaO-Al2O3-MgO-SiO2 slag glass ceramics. J Non-Cryst Solids. 2018;500:310–316.
  • Fang J, Pang Z, Xing X, et al. Thermodynamic properties, viscosity, and structure of CaO–SiO2–MgO–Al2O3–TiO2–based slag. Materials (Basel). 2020;14(1):124.
  • Zhang J, Jiao K, Zhang J, et al. Thermal stability of molten slag in blast furnace hearth. ISIJ Int. 2021;61(8):2227–2236.
  • Mills K. The estimation of slag properties. South Afr Pyrometall. 2011;7(3):35–42.
  • Liu W, Chen Y, Wang J, et al. Sulfide capacity of CaO–SiO2–MgO–Al2O3–BaO–Na2O slag at 1773K. J Sust Metall. 2021;7(3):1169–1177.
  • Shatokha V. Slag parameters and sulphur partition in blast furnace hearth: Ukrainian case and international comparison. Ironmak Steelmak. 2022;49(1):60–69.
  • Yadav US, Das BK, Baijal AD. (2002). Sinter quality at Tata steel: past, present and future. In Proceedings of the Seminar on Raw Material Preparation for Metallurgical Industries: Problems and Solutions, April 8-9 2002 (p. 187). Allied Publishers.
  • Srivastava MP, Pan SK, Prasad N, et al. Characterization and processing of iron ore fines of kiriburu deposit of India. Int J Miner Process. 2001;61(2):93–107.
  • Maulik SC, Bhattacharyya KK. (2004). A beneficiation scheme for reduction of alumina in iron ores from Barsua.
  • Upadhyay RK, Venkatesh AS. Current strategies and future challenges on exploration, beneficiation and value addition of iron ore resources with special emphasis on iron ores from eastern India. Appl Earth Sci. 2006;115(4):187–195.
  • Roy S, Das A, Mohanty MK. Feasibility of producing pellet grade concentrate by beneficiation of iron ore slime in India. Sep Sci Technol. 2007;42(14):3271–3287.
  • Upadhyay RK, Venkatesh AS, Roy S. Mineralogical characteristics of iron ores in Joda and Khondbond areas in Eastern India with implications on beneficiation. Res Geol. 2010;60(2):203–211.
  • Roy S, Das A. Recovery of valuables from low-grade iron ore slime and reduction of waste volume by physical processing. Part Sci Technol. 2013;31(3):256–263.
  • Kumar D, Jain V, Rai B. Can carboxymethyl cellulose be used as a selective flocculant for beneficiating alumina-rich iron ore slimes? A density functional theory and experimental study. Miner Eng. 2018;121:47–54.
  • Bi Z, Li K, Jiang C, et al. Performance and transition mechanism from acidity to basicity of amphoteric oxides (Al2O3 and B2O3) in SiO2–CaO–Al2O3–B2O3 system: a molecular dynamics study. Ceram Int. 2021;47(9):12252–12260.
  • Trasatti S. Work function, electronegativity, and electrochemical behaviour of metals: II. Potentials of zero charge and “electrochemical” work functions. J Electroanal Chem Interfacial Electrochem. 1971;33(2):351–378.
  • Tiwary JN, Sarkar S, Mishra B, et al. Structural aspects of blast furnace slag. Emerg Mater Res. 2013;2(3):152–162.
  • Lv X, Yan Z. High-Temperature physicochemical properties of high alumina slag. In: High temperature physicochemical properties of high alumina blast furnace slag. Singapore: Springer; 2022. p. 77–102.
  • Xu R, Zhang J, Fan X, et al. Effect of MnO on high-alumina slag viscosity and corrosion behavior of refractory in slags. ISIJ Int. 2017;57(11):1887–1894.
  • Chargui F, Hamidouche M, Belhouchet H, et al. Mullite fabrication from natural kaolin and aluminium slag. Boletín de la sociedad española de cerámica y vidrio. 2018;57(4):169–177.
  • Talapaneni T, Yedla N, Pal S, et al. Experimental and theoretical studies on the viscosity–structure correlation for high alumina-silicate melts. Metall Mater Trans B. 2017;48(3):1450–1462.
  • Zhang R, Zhang Y, Liu T, et al. Effect of high alumina-based solid waste on efflorescence behavior of alkali-activated steel slag. Constr Build Mater. 2022;349:128804.
  • Wang S, Jiang Y, Guo Y, et al. Effects of basicity and Al2O3 content on viscosity and crystallization behavior of super-high-alumina slag. Crystals (Basel). 2022;12(6):851.
  • Park JH, Kim H, Min DJ. Novel approach to link between viscosity and structure of silicate melts via Darken’s excess stability function: focus on the amphoteric behavior of alumina. Metall Mater Trans B. 2008;39(1):150–153.
  • Sun CY, Liu XH, Li J, et al. Influence of Al2O3 and MgO on the viscosity and stability of CaO–MgO–SiO2–Al2O3 slags with CaO/SiO2 = 1.0. ISIJ Int. 2017;57(6):978–982.
  • Wang Z, Sun Y, Sridhar S, et al. Effect of Al2O3 on the viscosity and structure of CaO-SiO2-MgO-Al2O3-FetO slags. Metall Mater Trans B. 2015;46(2):537–541.
  • Liao J, Zhang Y, Sridhar S, et al. Effect of Al2O3/SiO2 ratio on the viscosity and structure of slags. ISIJ Int. 2012;52(5):753–758.
  • Wang Q, Zhang J, Liu J, et al. Thermal conduction mechanism based on microstructural transformations of molten slag: the role of calcium oxide. Int J Heat Mass Transfer. 2020;160:120167.
  • Mysels KJ. The maximum bubble pressure method of measuring surface tension, revisited. Colloids Surf. 1990;43(2):241–262.
  • Shankar A, Görnerup M, Seetharaman S, et al. Sulfide capacity of high alumina blast furnace slags. Metall Mater Trans B. 2006;37(6):941–947.
  • Wang L, Wang Y, Wang Q, et al. Raman structure investigations of CaO-MgO-Al2O3-SiO2-CrO x and its correlation with sulfide capacity. Metall Mater Trans B. 2016;47(1):10–15.
  • Guo Y, Shen F, Zheng H, et al. Desulfurization ability of blast furnace slag containing high Al2O3 at 1773K. Crystals (Basel). 2021;11(8):910.
  • Hino M, Nagasaka T, Katsumata A, et al. Simulation of primary-slag melting behavior in the cohesive zone of a blast furnace, considering the effect of Al2O3. Fe t O, and basicity in the sinter ore. Metall Mater Trans B. 1999;30(4):671–683.
  • Yao L, Ren S, Wang X, et al. Effect of Al2O3, MgO, and CaO/SiO2 on viscosity of high alumina blast furnace slag. Steel Res Int. 2016;87(2):241–249.
  • Lu L, H RJ, M JR. Effects of alumina on sintering performance of hematite iron ores. ISIJ Int. 2007;47(3):349–358.
  • Umadevi T, Deodar AV, Mahapatra PC, et al. Influence of alumina on iron ore sinter properties and productivity in the conventional and selective granulation sintering process. Steel Res Int. 2009;80(9):686–692.
  • Umadevi T, Sah R, Mahapatra PC. Influence of sinter basicity (CaO/SiO2) on low and high alumina iron ore sinter quality. Min Proc Extractive Metall. 2014;123(2):75–85.
  • Muwanguzi AJ, Karasev AV, Byaruhanga JK, et al. Characterization of chemical composition and microstructure of natural iron ore from Muko deposits. Int Sch Res Notices. 2012;2012:174803. 9 pages.
  • Agrawal A, Das K, Singh BK, et al. Means to cope with the higher alumina burden in the blast furnace. Ironmak Steelmak. 2020;47(3):238–245.
  • Dynys FW, Halloran JW. Alpha alumina formation in alum-derived gamma alumina. J Am Ceram Soc. 1982;65(9):442–448.
  • Feret FR, Roy D, Boulanger C. Determination of alpha and beta alumina in ceramic alumina by X-ray diffraction. Spectrochim Acta Part B. 2000;55(7):1051–1061.
  • Rotole JA, Sherwood PM. Gamma-alumina (γ-Al2O3) by XPS. Surf Sci Spectra. 1998;5(1):18–24.
  • Kiyohara PK, Santos HS, Coelho ACV, et al. Structure, surface area and morphology of aluminas from thermal decomposition of Al (OH)(CH3COO) 2 crystals. Anais da Academia Brasileira de Ciências. 2000;72:471–495.
  • Hashimoto H, Onodera Y, Tahara S, et al. Structure of alumina glass. Sci Rep. 2022;12(1):1–9.
  • Shi C, Alderman OL, Berman D, et al. The structure of amorphous and deeply supercooled liquid alumina. Front Mater. 2019;6:38.
  • Dippenaar R. Industrial uses of slag (the use and re-use of iron and steelmaking slags). Ironmak Steelmak. 2005;32(1):35–46.
  • Stuart NM, Sohlberg K. The microstructure of γ-alumina. Energies. 2021;14(20):6472.
  • Kovarik L, Bowden M, Genc A, et al. Structure of δ-alumina: toward the atomic level understanding of transition alumina phases. J Phys Chem C. 2014;118(31):18051–18058.
  • Chandran CV, Kirschhock CE, Radhakrishnan S, et al. Alumina: discriminative analysis using 3D correlation of solid-state NMR parameters. Chem Soc Rev. 2019;48(1):134–156.
  • Kaur P, Khanna A, Kaur N, et al. Synthesis and structural characterization of alumina nanoparticles. Phase Trans. 2020;93(6):596–605.
  • Tavakoli AH, Maram PS, Widgeon SJ, et al. Amorphous alumina nanoparticles: structure, surface energy, and thermodynamic phase stability. J Phys Chem C. 2013;117(33):17123–17130.
  • O’Dell LA, Savin SL, Chadwick AV, et al. Structural studies of silica-and alumina-pinned nanocrystalline SnO2. Nanotechnology. 2005;16(9):1836.
  • Song K, Kim W, Park S, et al. Preparation of silica-alumina nanoparticles via blast-furnace slag dissolution in low-concentration acetic acid for carbonation. Minerals. 2017;7(11):206.
  • Wang S, Jiang Y, Guo Y, et al. Effects of basicity and Al2O3 content on viscosity and crystallization behavior of super-high-alumina slag. Crystals (Basel). 2022;12(6):851.
  • Xu RZ, Zhang JL, Han WX, et al. Effect of BaO and Na2O on the viscosity and structure of blast furnace slag. Ironmak Steelmak. 2018;47:168–172.
  • Siafakas D, Matsushita T, Hakamada S, et al. Measurement of viscosity of SiO2-CaO-Al2O3 slag in wide temperature range by aerodynamic levitation and rotating bob methods and sources of systematic error. Int J Microgravity Sci Appl. 2018;35(2):350204.
  • Chebykin D, Heller HP, Dubberstein T, et al. Viscosity measurement of slags using rotating bob and vibrating finger viscometer. ISIJ Int. 2017;57(8):1319–1326.
  • Saito N, Hori N, Nakashima K, et al. Viscosity of blast furnace type slags. Metall Mater Trans B. 2003;34(5):509–516.
  • Tang XL, Zhang ZT, Guo M, et al. Viscosities behavior of CaO-SiO2-MgO-Al2O3 slag with low mass ratio of CaO to SiO2 and wide range of A12O3 content. J Iron Steel Res Int. 2011;18(2):1–6.
  • Yao L, Ren S, Liu G, et al. Study of the effect of the MgO/Al2O3 ratio on viscosity of blast furnace slag. Metall Res Technol. 2015;112(6):602.
  • Bian L, Gao Y. Influence of Al2O3, CaO/SiO2, and B2O3 on viscous behavior of high alumina and medium titania blast furnace slag. J Chem. 2017;2017:6895928. 6 pages.
  • Fukutake T, Okabe KO. Experimental studies of slag flow in the blast furnace hearth during tapping operation. Trans Iron Steel Inst Jpn. 1976;16:309.
  • Sunahara K, Nakano K, Hoshi M, et al. Effect of high Al2O3 slag on the blast furnace operations. ISIJ Int 2008;48(4):420–429.
  • Lee YS, Min DJ, Jung SM, et al. Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO. ISIJ Int 2004;44(8):1283–1290.
  • Han C. (2017). Viscosity studies of high-temperature metallurgical slags relevant to ironmaking process.
  • Feng C, Chu M, Tang J, et al. Effect of CaO/SiO2 and Al2O3 on viscous behaviors of the titanium-bearing blast furnace slag. Steel Res Int. 2016;87(10):1274–1283.
  • Dienes GJ. Activation energy for viscous flow and short-range order. J Appl Phys. 1953;24(6):779–782.
  • Deng L, Zhang X, Zhang M, et al. Effect of CaF2 on viscosity, structure and properties of CaO-Al2O3-MgO-SiO2 slag glass ceramics. J Non-Cryst Solids. 2018;500:310–316.
  • Fang J, Pang Z, Xing X, et al. Thermodynamic properties, viscosity, and structure of CaO–SiO2–MgO–Al2O3–TiO2–based slag. Materials (Basel). 2020;14(1):124.
  • Tang XL, Zhang ZT, Guo M, et al. Viscosities behavior of CaO-SiO2-MgO-Al2O3 slag with low mass ratio of CaO to SiO2 and wide range of A12O3 content. J Iron Steel Res Int. 2011;18(2):1–6.
  • Jiang X, Zhang HY, Zheng HY, et al. Three-segment control theory of MgO/Al2O3 ratio based on viscosity experiments and phase diagram analyses at 1500° C. J Iron Steel Res Int. 2020;27(6):624–630.
  • Zhang J, Wang C, Jiao K, et al. Effect of BaO and MnO on high-temperature properties and structure of blast furnace slag. J Non-Cryst Solids. 2021;571:121066.
  • Park H, Park JY, Kim GH, et al. Effect of TiO2 on the viscosity and slag structure in blast furnace type slags. steel Res Int. 2012;83(2):150–156.
  • Chen M, Zhang D, Kou M, et al. Viscosities of iron blast furnace slags. ISIJ Int. 2014;54(9):2025–2030.
  • Li T, Sun C, Song S, et al. Influences of Al2O3 and TiO2Content on viscosity and structure of CaO–8% MgO–Al2O3–SiO2–TiO2–5% FeO blast furnace primary slag. Metals (Basel). 2019;9(7):743.
  • Gan L, Lai C. A general viscosity model for molten blast furnace slag. Metall Mater Trans B. 2014;45(3):875–888.
  • Kim H, Kim WH, Sohn I, et al. The effect of MgO on the viscosity of the CaO-SiO2-20 wt% Al2O3-MgO slag system. steel Res Int. 2010;81(4):261–264.
  • Xing X, Pang Z, Zheng J, et al. Effect of MgO and K2O on high-Al silicon–manganese alloy slag viscosity and structure. Minerals. 2020;10(9):810.
  • Yan Z, Lv X, Zhang J, et al. Influence of MgO, Al2O3 and CaO/SiO2 on the viscosity of blast furnace type slag with high Al2O3 and 5 wt-% TiO2. Can Metall Q. 2016;55(2):186–194.
  • Das K, Agrawal A, Reddy AS, et al. Factsage studies to identify the optimum slag regime for blast furnace operation. Trans Indian Inst Met. 2021;74(2):419–428.
  • Chang ZY, Jiao KX, Zhang JL, et al. Experimental investigation of relationship between enthalpy change and viscosity in blast furnace type slags. ISIJ Int. 2019;59(1):39–45.
  • Shankar A, Görnerup M, Lahiri AK, et al. Estimation of viscosity for blast furnace type slags. Ironmak Steelmak. 2007;34(6):477–481.
  • Babenko AA, Istomin SA, Protopopov EV, et al. Viscosity of CaO-SiO2-Al2O3-MgO-B2O3 slags. Steel Transl. 2014;44(2):110–112.
  • Ghosh D, Krishnamurthy VA, Sankaranarayanan SR. Application of optical basicity to viscosity of high alumina blast furnace slags. J Min Metall Sect B. 2010;46(1):41–49.
  • Yan Z, Pang Z, Lv XW, et al. Effect of TiO2 on the viscous behavior of high alumina blast furnace slag. In: TMS annual meeting & exhibition Cham: Springer; 2018, March. p. 725–733.
  • Jiao K, Zhang J, Wang Z, et al. Melting features and viscosity of TiO2-containing primary slag in a blast furnace. High Temp Mater Processes. 2018;37(2):149–156.
  • Xu RZ, Zhang JL, Ma RY, et al. Influence of TiO2 on the viscosity of a high alumina slag and on carbon brick corrosion. Steel Res Int. 2018;89(3):1700353.
  • Zhang X, Jiang T, Xue X, et al. Influence of MgO/Al2O3 ratio on viscosity of blast furnace slag with high Al2O3 content. Steel Res Int. 2016;87(1):87–94.
  • Yan Z, Lv X, Liang D, et al. Transition of blast furnace slag from silicates-based to aluminates-based: viscosity. Metall Mater Trans B. 2017;48(2):1092–1099.
  • Liu H, Qin Y, Yang Y, et al. Influence of Al2O3 content on the melting and fluidity of blast furnace type slag with low TiO2 content. J Chem. 2018;2018:1–6.
  • Siafakas D, Matsushita T, Jarfors AEW, et al. Viscosity of SiO2–CaO–Al2O3 slag with low silica–influence of CaO/Al2O3, SiO2/Al2O3 ratio. ISIJ Int. 2018;58(12):2180–2185.
  • Xu CY, Wang C, Xu RZ, et al. Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags. Int J Miner Metall Mater. 2021;28(5):797–803.
  • Xu RZ, Zhang JL, Wang ZY, et al. Influence of Cr2O3 and B2O3 on viscosity and structure of high alumina slag. steel Res Int. 2017;88(4):1600241.
  • Gao Y, Bian L, Liang Z. Influence of B2O3 and TiO2 on viscosity of titanium-bearing blast furnace slag. steel Res Int. 2015;86(4):386–390.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.