8,431
Views
22
CrossRef citations to date
0
Altmetric
TUIA250 Supplement

Mātauranga-guided screening of New Zealand native plants reveals flavonoids from kānuka (Kunzea robusta) with anti-Phytophthora activity

, , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 137-154 | Received 28 Jun 2019, Accepted 24 Jul 2019, Published online: 19 Aug 2019

References

  • Abreu AC, McBain AJ, Simoes M. 2012. Plants as sources of new antimicrobials and resistance-modifying agents. Natural Product Reports. 29:1007–1021. doi: 10.1039/c2np20035j
  • Ahmad A, Kaleem M, Ahmed Z, Shafiq H. 2015. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections—a review. Food Research International. 77:221–235. doi: 10.1016/j.foodres.2015.06.021
  • Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science. 290:972–977. doi: 10.1126/science.290.5493.972
  • Beever JE, Coffey MD, Ramsfield TD, Dick MA, Horner IJ. 2009. Kauri (Agathis australis) under threat from Phytophthora? In: Goheen EMF, S.J., editor. Phytophthoras in Forests and Natural Ecosystems Proceedings of the Fourth Meeting of IUFRO Working Party S070209, General Technical report OSW-GTR-221. Albany, CA: USDA Forest Service. p. 74–85.
  • Bellgard SE, Padamsee M, Probst CM, Lebel T, Williams SE. 2016. Visualizing the early infection of Agathis australis by Phytophthora agathidicida, using microscopy and fluorescent in situ hybridization. Forest Pathology. 46:622–631. doi: 10.1111/efp.12280
  • Bennett RN, Wallsgrove RM. 1994. Secondary metabolites in plant defense-mechanisms. New Phytologist. 127:617–633. doi: 10.1111/j.1469-8137.1994.tb02968.x
  • Best E. 1905. Māori medical lore. Notes on sickness and disease among the māori people of New Zealand, and their treatment of the sick; together with some account of various beliefs, superstitions and rites pertaining to sickness, and the treatment thereof, as collected from the tūhoe Tribe. The Journal of the Polynesian Society. 14:1–23.
  • Bloor SJ. 1992. Antiviral phloroglucinols from New Zealand Kunzea species. Journal of Natural Products. 55:43–47. doi: 10.1021/np50079a006
  • Blunt JW, Calder VL, Fenwick GD, Lake RJ, McCombs JD, Munro MHG, Perry NB. 1987. Reverse phase flash chromatography: a method for the rapid partitioning of natural product extracts. Journal of Natural Products. 50:290–292. doi: 10.1021/np50050a039
  • Boonphong S, Puangsombat P, Baramee A, Mahidol C, Ruchirawat S, Kittakoop P. 2007. Bioactive compounds from Bauhinia purpurea possessing antimalarial, antimycobacterial, antifungal, anti-inflammatory, and cytotoxic activities. Journal of Natural Products. 70:795–801. doi: 10.1021/np070010e
  • Buenz EJ, Verpoorte R, Bauer BA. 2018. The ethnopharmacologic contribution to bioprospecting natural products. Annual Review of Pharmacology and Toxicology. 58:509–530. doi: 10.1146/annurev-pharmtox-010617-052703
  • Carlile MJ. 1985. The zoospore and its problems. In: Ayres PGB L, editor. Water, fungi and plants. Cambridge: University Press, Cambridge; p. 105–118.
  • Cascaes MM, Guilhon GMSP, de Aguiar Andrade EH, das Graças Bichara Zoghbi M, da Silva Santos L. 2015. Constituents and pharmacological activities of Myrcia (Myrtaceae): a review of an aromatic and medicinal group of plants. International Journal of Molecular Sciences. 16:23881–23904. doi: 10.3390/ijms161023881
  • Chen C-C, Yan S-H, Yen M-Y, Wu P-F, Liao W-T, Huang T-S, Wen Z-H, David Wang H-M. 2016. Investigations of kanuka and manuka essential oils for in vitro treatment of disease and cellular inflammation caused by infectious microorganisms. Journal of Microbiology, Immunology and Infection. 49:104–111. doi: 10.1016/j.jmii.2013.12.009
  • Collins S, McComb JA, Howard K, Shearer BL, Colquhoun IJ, Hardy GESJ. 2012. The long-term survival of Phytophthora cinnamomi in mature Banksia grandis killed by the pathogen. Forest Pathology. 41:28–36. doi: 10.1111/j.1439-0329.2011.00718.x
  • Cowan MM. 1999. Plant products as antimicrobial agents. Clinical Microbiolgy Reviews. 12(4):564–582. doi: 10.1128/CMR.12.4.564
  • Crone M, McComb JA, O'Brien PA, Hardy GE. 2013. Survival of Phytophthora cinnamomi as oospores, stromata, and thick-walled chlamydospores in roots of symptomatic and asymptomatic annual and herbaceous perennial plant species. Fungal Biology. 117(2):112–123. doi: 10.1016/j.funbio.2012.12.004
  • Dao T-T, Tung B-T, Nguyen P-H, Thuong P-T, Yoo S-S, Kim E-H, Kim S-K, Oh W-K. 2010. C-Methylated flavonoids from Cleistocalyx operculatus and their inhibitory effects on novel influenza A (H1N1) neuraminidase. Journal of Natural Products. 73:1636–1642. doi: 10.1021/np1002753
  • de Lange PJ. 2014. A revision of the New Zealand Kunzea ericoides (Myrtaceae) complex. PhytoKeys. 40:1–185. doi: 10.3897/phytokeys.40.7973
  • de Lange PJ, Rolfe JR, Champion PD, Courtney SP, Heenan PB, Barkla JW, Cameron EK, Norton DA, Hitchmough RA. 2018. Conservation status of New Zealand indigenous vascular plants, 2017. Wellington: Department of Conservation.
  • Demuner AJ, Barbosa LCA, Magalhaes CG, da Silva CJ, Maltha CRA, Pinheiro AL. 2011. Seasonal variation in the chemical composition and antimicrobial activity of volatile oils of three species of Leptospermum (Myrtaceae) grown in Brazil. Molecules. 16:1181–1191. doi: 10.3390/molecules16021181
  • Dobrowolski MP, Shearer BL, Colquhoun IJ, O’Brien PA, Hardy GES. 2008. Selection for decreased sensitivity to phosphite in Phytophthora cinnamomi with prolonged use of fungicide. Plant Pathology. 57(5):928–936. doi: 10.1111/j.1365-3059.2008.01883.x
  • Ecroyd C. 1982. Biological flora of New Zealand 8. Agathis australis (D. Don) Lindl.(Araucariaceae) Kauri. New Zealand Journal of Botany. 20:17–36. doi: 10.1080/0028825X.1982.10426402
  • Gisi U, Sierotzki H. 2008. Fungicide modes of action and resistance in downy mildews. European Journal of Plant Pathology. 122:157–167. doi: 10.1007/s10658-008-9290-5
  • Häberlein H, Tschiersch K-P. 1998. On the occurrence of methylated and methoxylated flavonoids in Leptospermum scoparium. Biochemical Systematics and Ecology. 26:97–103. doi: 10.1016/S0305-1978(97)00084-7
  • Hardham AR, Blackman LM. 2018. Phytophthora cinnamomi. Molecular Plant Pathology. 19(2):260–285. doi: 10.1111/mpp.12568
  • Havsteen BH. 2002. The biochemistry and medical significance of the flavonoids. Pharmacology & Therapeutics. 96:67–202. doi: 10.1016/S0163-7258(02)00298-X
  • Horner IJH EG. 2013. Phosphorous acid for controlling Phytophthora taxon Agathis in kauri: glasshouse trials. New Zealand Plant Protection. 66:242–248. doi: 10.30843/nzpp.2013.66.5673
  • Hua C, Wang Y, Zheng X, Dou D, Zhang Z, Govers F, Wang Y. 2008. A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones. Eukaryotic Cell. 7:2133–2140. doi: 10.1128/EC.00286-08
  • Joseph CC, Magadula JJ, Nkunya MHH. 2007. A novel antiplasmodial 3′,5′-diformylchalcone and other constituents of Friesodielsia obovata. Natural Product Research. 21:1009–1015. doi: 10.1080/14786410701194310
  • Judelson HS, Blanco FA. 2005. The spores of Phytophthora: weapons of the plant destroyer. Nature Reviews Microbiology. 3:47–58. doi: 10.1038/nrmicro1064
  • Kamoun S, Furzer O, Jones JD, Judelson HS, Ali GS, Dalio RJ, Roy SG, Schena L, Zambounis A, Panabieres F, et al. 2015. The top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology. 16:413–434. doi: 10.1111/mpp.12190
  • Killeen DP, van Klink JW, Smallfield BM, Gordon KC, Perry NB. 2015. Herbicidal β-triketones are compartmentalized in leaves of Leptospermum species: localization by Raman microscopy and rapid screening. New Phytologist. 205:339–349. doi: 10.1111/nph.12970
  • Lawrence SA, Armstrong CB, Patrick WM, Gerth ML. 2017. High-throughput chemical screening identifies compounds that inhibit different stages of the Phytophthora agathidicida and Phytophthora cinnamomi life cycles. Frontiers in Microbiology. doi.org/10.3389/fmicb.2017.01340.
  • Lis-Balchin M, Hart SL, Deans SG. 2000. Pharmacological and antimicrobial studies on different tea-tree oils (Melaleuca alternifolia, Leptospermum scoparium or Manuka and Kunzea ericoides or Kanuka), originating in Australia and New Zealand. Phytotherapy Research. 14:623–629. doi: 10.1002/1099-1573(200012)14:8<623::AID-PTR763>3.0.CO;2-Z
  • Lloyd RC. 1960. Growth study of regenerated kauri and podocarps in Russell Forest. New Zealand Journal of Forestry. 8:355–361.
  • Maroyi A. 2019. Phytochemical and ethnopharmacological review of Heteropyxis natalensis. Asian Journal of Pharmaceutical and Clinical Research. 12:8–15. doi: 10.22159/ajpcr.2019.v12i3.29375
  • Massaro CF, Katouli M, Grkovic T, Vu H, Quinn RJ, Heard TA, Carvalho C, Manley-Harris M, Wallace HM, Brooks P. 2014. Anti-staphylococcal activity of C-methyl flavanones from propolis of Australian stingless bees (Tetragonula carbonaria) and fruit resins of Corymbia torelliana (Myrtaceae). Fitoterapia. 95:247–257. doi: 10.1016/j.fitote.2014.03.024
  • Matsuura S. 1957. The structure of cryptostrobin and strobopinin, the flavanones from the heartwood of Pinus strobus. Pharmaceutical Bulletin. 5:195–198. doi: 10.1248/cpb1953.5.195
  • Mayer R. 1990. Flavonoids from Leptospermum scoparium. Phytochemistry. 29:1340–1342. doi: 10.1016/0031-9422(90)85462-O
  • Miao J, Cai M, Dong X, Liu L, Lin D, Zhang C, Pang Z, Liu X. 2016. Resistance assessment for oxathiapiprolin in Phytophthora capsici and the detection of a point mutation (G769W) in PcORP1 that confers resistance. Frontiers in Microbiology. 7:615. doi: 10.3389/fmicb.2016.00615
  • Morris PF, Ward EWB. 1992. Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones. Physiological and Molecular Plant Pathology. 40:17–22. doi: 10.1016/0885-5765(92)90067-6
  • Mustafa KA, Perry NB, Weavers RT. 2005. Lipophilic C-methylflavonoids with no B-ring oxygenation in Metrosideros species (Myrtaceae). Biochemical Systematics and Ecology. 33:1049–1059. doi: 10.1016/j.bse.2005.02.003
  • Oliver RP, Hewitt HG. 2014. Plant pathology and plant pathogens. Fungicides in Crop protection. CABI Publishing.
  • Parra G, Ristaino JB. 2001. Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Disease. 85:1069–1075. doi: 10.1094/PDIS.2001.85.10.1069
  • Perry NB, van Klink JW, Brennan NJ, Harris W, Anderson RE, Douglas MH, Smallfield BM. 1997. Essential oils from New Zealand manuka and kanuka: chemotaxonomy of Kunzea. Phytochemistry. 45:1606–1612. doi: 10.1016/S0031-9422(97)00203-3
  • Porter NG, Wilkins AL. 1999. Chemical, physical and antimicrobial properties of essential oils of Leptospermum scoparium and Kunzea ericoides. Phytochemistry. 50(3):407–415. doi: 10.1016/S0031-9422(98)00548-2
  • Prosser JA, Woods RR, Horswell J, Robinson BH. 2016. The potential in-situ antimicrobial ability of Myrtaceae plant species on pathogens in soil. Soil Biology and Biochemistry. 96:1–3. doi: 10.1016/j.soilbio.2015.12.007
  • Pusztahelyi T, Holb IJ, Pocsi I. 2015. Secondary metabolites in fungus-plant interactions. Frontiers in Plant Science. 6. doi:10.3389/fpls.2015.00573.
  • Rivera-Vargas LI, Schmitthenner AF, Graham TL. 1993. Soybean flavonoid effects on and metabolism by Phytophthora sojae. Phytochemistry. 32:851–857. doi: 10.1016/0031-9422(93)85219-H
  • Sá FAS, Borges LL, Paula JAM, Sampaio BL, Ferri PH, Paula JR. 2012. Essential oils in aerial parts of Myrcia tomentosa: composition and variability. Brazilian Journal of Pharmacognosy. 22:1233–1240. doi: 10.1590/S0102-695X2012005000120
  • Samanta A, Das G, Das S. 2011. Roles of flavonoids in plants. International Journal of Pharmaceutical Science and Technology. 6:12–35.
  • Saslis-Lagoudakis CH, Savolainen V, Williamson EM, Forest F, Wagstaff SJ, Baral SR, Watson MF, Pendry CA, Hawkins JA. 2012. Phylogenies reveal predictive power of traditional medicine in bioprospecting. Proceedings of the National Academy of Sciences. 109:15835–15840. doi: 10.1073/pnas.1202242109
  • Scott P, Williams N. 2014. Phytophthora diseases in New Zealand forests. New Zealand Journal of Forestry. 59:14–21.
  • Seleem D, Pardi V, Murata RM. 2017. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Archives of Oral Biology. 76:76–83. doi: 10.1016/j.archoralbio.2016.08.030
  • Srivarangkul P, Yuttithamnon W, Suroengrit A, Pankaew S, Hengphasatporn K, Rungrotmongkol T, Phuwapraisirisan P, Ruxrungtham K, Boonyasuppayakorn S. 2018. A novel flavanone derivative inhibits dengue virus fusion and infectivity. Antiviral Research. 151:27–38. doi: 10.1016/j.antiviral.2018.01.010
  • Steward GA, Beveridge AE. 2010. A review of New Zealand kauri (Agathis australis (D.Don) Lindl.): its ecology, history, growth and potential for management for timber. New Zealand Journal of Forestry Science. 40:33–59.
  • Subramanian S, Graham MY, Yu O, Graham TL. 2005. RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiology. 137:1345–1353. doi: 10.1104/pp.104.057257
  • Tyler BM. 2002. Molecular basis of recognition between Phytophthora pathogens and their hosts. Annual Review of Phytopathology. 40:137–167. doi: 10.1146/annurev.phyto.40.120601.125310
  • Tyler BM, Wu M, Wang J, Cheung W, Morris PF. 1996. Chemotactic preferences and strain variation in the response of Phytophthora sojae zoospores to host isoflavones. Applied and Environmental Microbiology. 62:2811–2817.
  • Waipara NWH, Hill S, Hill LMW, Hough EG, Horner IJ. 2013. Surveillance methods to determine tree health, distribution of kauri dieback disease and associated pathogens. New Zealand Plant Protection. 66:235–241. doi: 10.30843/nzpp.2013.66.5671
  • Waitangi Tribunal Report. 2011. Ko Aotearoa tēnei: a report into claims concerning New Zealand law and policy affecting Māori culture and identify: Te taumata tuatahi. Wellington.
  • Weir BS, Paderes EP, Anand N, Uchida JY, Pennycook SR, Bellgard SE, Beever RE. 2015. A taxonomic revision of Phytophthora Clade 5 including two new species, Phytophthora agathidicida and P. cocois. Phytotaxa. 205:21–38. doi: 10.11646/phytotaxa.205.1.2
  • Wyse SV, Burns BR, Wright SD. 2014. Distinctive vegetation communities are associated with the long-lived conifer Agathis australis (New Zealand kauri, Araucariaceae) in New Zealand rainforests. Australian Journal of Ecology. 39:388–400. doi: 10.1111/aec.12089
  • Wyse SV, Macinnis-Ng CM, Burns BR, Clearwater MJ, Schwendenmann L. 2013. Species assemblage patterns around a dominant emergent tree are associated with drought resistance. Tree Physiology. 33:1269–1283. doi: 10.1093/treephys/tpt095