534
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Phylogeography reveals the complex impact of the Last Glacial Maximum on New Zealand’s terrestrial biota

ORCID Icon & ORCID Icon
Pages 8-29 | Received 02 Apr 2022, Accepted 16 May 2022, Published online: 26 May 2022

References

  • Allentoft ME, Heller R, Oskam CL, Lorenzen ED, Hale ML, Gilbert MTP, Jacomb C, Holdaway RN, Bunce M. 2015. Extinct New Zealand megafauna were not in decline before human colonization. Proc Natl Acad Sci USA 111(13):4922–4927. doi:10.1073/pnas.1314972111
  • Alloway BV, Lowe DJ, Barrell DJA, Newnham RM, Almond PC, Augustinus PC, Bertler NAN, Carter L, Litchfield NJ, McGlone MS, et al. 2007. Towards a climate event stratigraphy for New Zealand over the past 30 000 years (NZ-INTIMATE project). Journal of Quaternary Science. 22(1):9–35.
  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC. 1987. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics. 18:489–522. doi:10.1146/annurev.es.18.110187.002421
  • Baker CM, Boyer SL, Giribet G. 2020. A well-resolved transcriptomic phylogeny of the mite harvestman family Pettalidae (Arachnida, Opiliones. Cyphophthalmi) reveals signatures of Gondwanan vicariance. J Biogeogr. 47(6):1345–1361. doi:10.1111/jbi.13828.
  • Banker SE, Wade EJ, Simon C. 2017. The confounding effects of hybridization on phylogenetic estimation in the New Zealand cicada genus Kikihia. Molecular Phylogenetics and Evolution. 116:172–181. doi:10.1016/j.ympev.2017.08.009.
  • Bator J, Marshall DC, Hill KBR, Cooley JR, Leston A, Simon C. 2021. Phylogeography of the endemic red-tailed cicadas of New Zealand (Hemiptera: Cicadidae: Rhodopsalta), and molecular, morphological and bioacoustical confirmation of the existence of Hudson’s Rhodopsalta microdora. Zoological Journal of the Linnean Society.:zlab065. doi:10.1093/zoolinnean/zlab065.
  • Bland KJ, Nicol A, Kamp PJJ, Nelson CS. 2019. Stratigraphic constraints on the late Miocene–Pleistocene evolution of the North Island Fault System and axial ranges in the central Hikurangi subduction margin, New Zealand. New Zealand Journal of Geology and Geophysics. 62:248–272. doi:10.1080/00288306.2018.1545675.
  • Boyer SL, Baker JM, Giribet G. 2007. Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy. Mol Ecol. 16(23):4999–5016. doi:10.1111/j.1365-294X.2007.03555.x.
  • Boyer SL, Dohr SR, Tuffield MS, Shu Y, Moore CD, Hahn KM, Ward RS, Nguyen P, Morisawa R. Forthcoming. Diversity and distribution of the New Zealand endemic mite harvestman genus Aoraki (Arachnida, Opiliones, Cyphophthalmi, Pettalidae), with the description of two new species. Invertebrate Systematics.
  • Buckley TR, Krosch M, Leschen RAB. 2015. Evolution of New Zealand insects: summary and prospectus for future research. Austral Entomology. 54(1):1–27. doi:10.1111/aen.12116.
  • Buckley TR, Marske KA, Attanayake D. 2009. Identifying glacial refugia in a geographic parthenogen using palaeoclimate modelling and phylogeography: the New Zealand stick insect Argosarchus horridus (White). Mol Ecol. 18(22):4650–4663. doi:10.1111/j.1365-294X.2009.04396.x.
  • Buckley TR, Marske K, Attanayake D. 2010. Phylogeography and ecological niche modelling of the New Zealand stick insect Clitarchus hookeri (White) support survival in multiple coastal refugia. Journal of Biogeography. 37(4):682–695. doi:10.1111/j.1365-2699.2009.02239.x.
  • Buckley TR, Simon C. 2007. Evolutionary radiation of the cicada genus Maoricicada Dugdale (Hemiptera: Cicadoidea) and the origins of the New Zealand alpine biota. Biol J Linnean Soc. 91(3):419–435. doi:10.1111/j.1095-8312.2007.00807.x.
  • Bulgarella M, Trewick SA, Minards NA, Jacobson MJ, Morgan-Richards M. 2014. Shifting ranges of two tree weta species (Hemideina spp.): competitive exclusion and changing climate. Journal of Biogeography. 41(3):524–535. doi:10.1111/jbi.12224.
  • Bunce M, Worthy TH, Phillips MJ, Holdaway RN, Willerslev E, Haile J, Shapiro B, Scofield RP, Drummond A, Kamp PJJ, Cooper A. 2009. The evolutionary history of the extinct ratite moa and New Zealand Neogene paleogeography. Proc Natl Acad Sci U S A. 106(49):20646–20651. doi:10.1073/pnas.0906660106.
  • Burge PI, Shulmeister J. 2007. An MIS 5a to MIS 4 (or early MIS 3) environmental and climatic reconstruction from the Northwest South Island, New Zealand, using beetle fossils. J Quat Sci. 22(5):501–516. doi:10.1002/jqs.1088.
  • Burridge CP, Craw D, Jack DC, King TM, Waters JM. 2008. Does fish ecology predict dispersal across a river drainage divide? Evolution. 62(6):1484–1499. doi:10.1111/j.1558-5646.2008.00377.x.
  • Carmelet-Rescan D, Morgan-Richards M, Koot EM, Trewick SA. 2021. Climate and ice in the last glacial maximum explain patterns of isolation by distance inferred for alpine grasshoppers. Insect Conservation and Diversity. 14(5):568–581. doi:10.1111/icad.12488.
  • Chapple DG, Bell TP, Chapple SNJ, Miller KA, Daugherty CH, Patterson GB. 2011. Phylogeography and taxonomic revision of the New Zealand cryptic skink (Oligosoma inconspicuum; Reptilia: Scincidae) species complex. Zootaxa. 2782(1):1. doi:10.11646/zootaxa.2782.1.1.
  • Chapple DG, Birkett A, Miller KA, Daugherty CH, Gleeson DM. 2012. Phylogeography of the endangered Otago Skink, Oligosoma otagense: population structure, hybridisation and genetic diversity in captive populations. PLOS ONE. 7(4):e34599. doi:10.1371/journal.pone.0034599.
  • Chapple DG, Ritchie PA, Daugherty CH. 2009. Origin, diversification, and systematics of the New Zealand skink fauna (Reptilia: Scincidae). Molecular Phylogenetics and Evolution. 52(2):470–487. doi:10.1016/j.ympev.2009.03.021.
  • Chinn WG, Gemmell NJ. 2004. Adaptive radiation within New Zealand endemic species of the cockroach genus Celatoblatta Johns (Blattidae): a response to Plio-Pleistocene mountain building and climate change. Mol Ecol. 13(6):1507–1518. doi:10.1111/j.1365-294X.2004.02160.x.
  • Cockayne L. 1911. Observations concerning evolution derived from ecological studies in New Zealand. Transactions and Proceedings of the New Zealand Institute. 44:1–50.
  • Cockayne L. 1917. Notes on New Zealand floristic botany, including descriptions of new species. Transactions and Proceedings of the New Zealand Institute. 49:56–65.
  • Craw D, Upton P, Burridge CP, Wallis GP, Waters JM. 2016. Rapid biological speciation driven by tectonic evolution in New Zealand. Nature Geoscience. 9(2):140–144. doi:10.1038/ngeo2618.
  • Crisp MD, Trewick SA, Cook LG. 2011. Hypothesis testing in biogeography. Trends Ecol Evol. 26(2):66–72. doi:10.1016/j.tree.2010.11.005.
  • Davis SR, Brav-Cubitt T, Buckley TR, Leschen RAB. 2019. Systematics of the New Zealand Weevil Etheophanus Broun (Curculionidae: Molytinae). Zootaxa. 4543(3):341–374. doi:10.11646/zootaxa.4543.3.2.
  • Derkarabetian S, Starrett J, Hedin M. 2022. Using natural history to guide supervised machine learning for cryptic species delimitation with genetic data. Front Zool. 19(1):8. doi:10.1186/s12983-022-00453-0.
  • Diamond J. 1990. New Zealand as an archipelago: an international perspective. In: Ecological restoration of New Zealand islands. Wellington: Department of Conservation; p. 3–8.
  • Dussex N, Sainsbury J, Moorhouse R, Jamieson IG, Robertson BC. 2015. Evidence for Bergmann’s rule and not allopatric subspeciation in the threatened Kaka (Nestor meridionalis). Journal of Heredity. 106(6):679–691. doi:10.1093/jhered/esv079.
  • Edwards SV, Potter S, Schmitt CJ, Bragg JG, Moritz C. 2016. Reticulation, divergence, and the phylogeography-phylogenetics continuum. Proc Natl Acad Sci U S A. 113(29):8025–8032. doi:10.1073/pnas.1601066113.
  • Ellis EA, Marshall DC, Hill KBR, Owen CL, Kamp PJJ, Simon C. 2015. Phylogeography of six codistributed New Zealand cicadas and their relationship to multiple biogeographical boundaries suggest a re-evaluation of the Taupo Line. Journal of Biogeography. 42(9):1761–1775. doi:10.1111/jbi.12532.
  • Espíndola A, Ruffley M, Smith ML, Carstens BC, Tank DC, Sullivan J. 2016. Identifying cryptic diversity with predictive phylogeography. Proc R Soc B-Biol Sci. 283(1841):20161529. doi:10.1098/rspb.2016.1529.
  • Fernández R, Giribet G. 2014. Phylogeography and species delimitation in the New Zealand endemic, genetically hypervariable harvestman species, Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi). Invertebrate Systematics. 28(4):401. doi:10.1071/IS14009.
  • Fikáček M, Minoshima Y, Vondráček D, Gunter N, Leschen RAB. 2013. Morphology of adults and larvae and integrative taxonomy of southern hemisphere genera Tormus and Afrotormus (Coleoptera: Hydrophilidae). Acta Entomologica Musei Nationalis Pragae. 53:75–156.
  • Fleming CA. 1979. The geological history of New Zealand and its life. Auckland: Auckland University Press.
  • Fouquet A, Green DM, Waldman B, Bowsher JH, McBride KP, Gemmell NJ. 2010. Phylogeography of Leiopelma hochstetteri reveals strong genetic structure and suggests new conservation priorities. Conserv Genet. 11(3):907–919. doi:10.1007/s10592-009-9935-8.
  • Gemmell MR, Shepherd LD, Zuccarello GC, Perrie LR. 2022. Phylogeography of the widespread New Zealand tree lancewood/horoeka (Pseudopanax crassifolius; Araliaceae). N Z J Bot. doi:10.1080/0028825X.2022.2037670.
  • Gibbs GW. 2016. Ghosts of Gondwana: the history of life in New Zealand. Nelson: Potton & Burton.
  • Goldberg J, Trewick SA, Powlesland RG. 2011. Population structure and biogeography of Hemiphaga pigeons (Aves: Columbidae) on islands in the New Zealand region. Journal of Biogeography. 38(2):285–298. doi:10.1111/j.1365-2699.2010.02414.x.
  • Greaves SNJ, Chapple DG, Gleeson DM, Daugherty CH, Ritchie PA. 2007. Phylogeography of the spotted skink (Oligosoma lineoocellatum) and green skink (O. chloronoton) species complex (Lacertilia: Scincidae) in New Zealand reveals pre-Pleistocene divergence. Molecular Phylogenetics and Evolution. 45(2):729–739. doi:10.1016/j.ympev.2007.06.008.
  • Heenan PB, McGlone MS. 2013. Evolution of New Zealand alpine and open-habitat plant species during the late Cenozoic. New Zealand Journal of Ecology. 37(1):105–113.
  • Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature. 405(6789):907–913. doi:10.1038/35016000.
  • Hewitt GM. 2004. Genetic consequences of climatic oscillations in the Quaternary. Phil Trans R Soc Lond B. 359(1442):183–195. doi:10.1098/rstb.2003.1388.
  • Hickerson MJ, Carstens BC, Cavender-Bares J, Crandall KA, Graham CH, Johnson JB, Rissler L, Victoriano PF, Yoder AD. 2010. Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol Phylogenet Evol. 54(1):291–301. doi:10.1016/j.ympev.2009.09.016.
  • Hill KBR, Simon C, Marshall DC, Chambers GK. 2009. Surviving glacial ages within the Biotic Gap: phylogeography of the New Zealand cicada Maoricicada campbelli. J Biogeogr. 36(4):675–692. doi:10.1111/j.1365-2699.2008.02036.x.
  • King KJ, Lewis DM, Waters JM, Wallis GP. 2020. Persisting in a glaciated landscape: Pleistocene microrefugia evidenced by the tree wētā Hemideina maori in central South Island, New Zealand. Journal of Biogeography. 47(11):2518–2531. doi:10.1111/jbi.13953.
  • Koot EM, Arnst E, Taane M, Goldsmith K, Thrimawithana A, Reihana K, González-Martínez SC, Goldsmith V, Houliston G, Chagné D. 2022. Genome-wide patterns of genetic diversity, population structure and demographic history in mānuka (Leptospermum scoparium) growing on indigenous Māori land. Horticulture Research. 9:uhab012. . doi:10.1093/hr/uhab012.
  • Koot EM, Morgan-Richards M, Trewick SA. 2020. An alpine grasshopper radiation older than the mountains, on Kā Tiritiri o te Moana (Southern Alps) of Aotearoa (New Zealand). Molecular Phylogenetics and Evolution. 147:106783. doi:10.1016/j.ympev.2020.106783.
  • Lee DE, Lee WG, Mortimer N. 2001. Where and why have all the flowers gone? Depletion and turnover in the New Zealand Cenozoic angiosperm flora in relation to palaeogeography and climate. Australian Journal of Botany. 49:341–356. doi:10.1071/BT00031.
  • Leschen RAB, Buckley TR, Harman HM, Shulmeister J. 2008. Determining the origin and age of the Westland beech (Nothofagus) gap, New Zealand, using fungus beetle genetics. Mol Ecol. 17(5):1256–1276. doi:10.1111/j.1365-294X.2007.03630.x.
  • Leschen RAB, Buckley TR. 2015. Revision and phylogeny of Syrphetodes (Coleoptera: Ulodidae): implications for biogeography, alpinization and conservation. Systematic Entomology. 40:143–168. doi:10.1111/syen.12094.
  • Lu HB, Fulthorpe CS, Mann P, Kominz MA. 2005. Miocene–Recent tectonic and climatic controls on sediment supply and sequence stratigraphy: Canterbury basin, New Zealand. Basin Res. 17(2):311–328. doi:10.1111/j.1365-2117.2005.00266.x.
  • Marra M, Leschen R. 2011. Persistence of New Zealand Quaternary beetles. New Zealand Journal of Geology and Geophysics. 54(4):403–413. doi:10.1080/00288306.2011.599399.
  • Marshall DC, Hill KBR, Cooley JR, Simon C. 2011. Hybridization, mitochondrial DNA phylogeography, and prediction of the early stages of reproductive isolation: lessons from New Zealand Cicadas (Genus Kikihia). Systematic Biology. 60(4):482–502. doi:10.1093/sysbio/syr017.
  • Marshall DC, Hill KBR, Fontaine KM, Buckley TR, Simon C. 2009. Glacial refugia in a maritime temperate climate: Cicada (Kikihia subalpina) mtDNA phylogeography in New Zealand. Mol Ecol. 18(9):1995–2009. doi:10.1111/j.1365-294X.2009.04155.x.
  • Marshall DC, Hill KBR, Marske KA, Chambers C, Buckley TR, Simon C. 2012. Limited, episodic diversification and contrasting phylogeography in a New Zealand cicada radiation. BMC Evolutionary Biology. 12(1):177. doi:10.1186/1471-2148-12-177.
  • Marshall DC, Slon K, Cooley JR, Hill KBR, Simon C. 2008. Steady Plio-Pleistocene diversification and a 2-million-year sympatry threshold in a New Zealand cicada radiation. Molecular Phylogenetics and Evolution. 48(3):1054–1066. doi:10.1016/j.ympev.2008.05.007.
  • Marske KA, Leschen RAB, Barker GM, Buckley TR. 2009. Phylogeography and ecological niche modelling implicate coastal refugia and trans-alpine dispersal of a New Zealand fungus beetle. Mol Ecol. 18(24):5126–5142. doi:10.1111/j.1365-294X.2009.04418.x.
  • Marske KA, Leschen RAB, Buckley TR. 2011. Reconciling phylogeography and ecological niche models for New Zealand beetles: looking beyond glacial refugia. Mol Phylogenet Evol. 59(1):89–102. doi:10.1016/j.ympev.2011.01.005.
  • Marske KA, Leschen RAB, Buckley TR. 2012. Concerted versus independent evolution and the search for multiple refugia: comparative phylogeography of four forest beetles: Concerted evolution vs. multiple refugia. Evolution. 66(6):1862–1877. doi:10.1111/j.1558-5646.2011.01538.x.
  • Marske KA, Thomaz AT, Knowles LL. 2020. Dispersal barriers and opportunities drive multiple levels of phylogeographic concordance in the Southern Alps of New Zealand. Mol Ecol. 29(23):4665–4679. doi:10.1111/mec.15655.
  • McCallum J, Hall S, Lissone I, Anderson J, Huynen L, Lambert DM. 2013. Highly informative ancient DNA ‘Snippets’ for New Zealand Moa. PLOS ONE. 8(1):e50732. doi:10.1371/journal.pone.0050732.
  • McCulloch GA, Foster BJ, Waters JM. 2019. Phylogeography reveals a North Island range extension for New Zealand's only sexually wing-dimorphic stonefly (Stenoperla helsoni). New Zealand Journal of Zoology 46(3):253–260. doi:10.1080/03014223.2018.1527775
  • McCulloch GA, Dutoit L, Craw D, Kroos GC, Waters JM. 2022. Genomics reveals exceptional phylogenetic diversity within a narrow-range flightless insect. Insect Systematics and Diversity. 6:5. doi:10.1093/isd/ixac009.
  • McCulloch GA, Wallis GP, Waters JM. 2010. Onset of glaciation drove simultaneous vicariant isolation of Alpine insects in New Zealand. Evolution. 64(7):2033–2043. doi:10.1111/j.1558-5646.2010.00980.x.
  • McGlone MS. 1985. Plant biogeography and the late Cenozoic history of New Zealand. New Zealand Journal of Botany. 23:723–749.
  • McGlone MS, Newnham RM, Moar NT. 2010. The vegetation cover of New Zealand during the last glacial maximum: Do pollen records under-represent woody vegetation? In: Altered ecologies: fire, climate and human influence on terrestrial landscapes. Terra Australis. Vol. 32. Canberra: ANU Press; p. 202–214.
  • McLay TGB, Tate JA, Gemmill CEC, Holzapfel AS, Symonds VV. 2022. Inferring the biogeography of New Zealand’s only endemic holoparasitic plant, the threatened Dactylanthus taylorii (Mystropetalaceae). New Zealand Journal of Botany. doi:10.1080/0028825X.2022.2035411.
  • Morgan-Richards M, Trewick SA, Stringer I. 2010. Geographic parthenogenesis and the common tea-tree stick insect of New Zealand. Molecular Ecology. 19(6):1227–1238. doi:10.1111/j.1365-294X.2010.04542.x.
  • Morgan-Richards M, Trewick SA, Wallis GP. 2001. ‪Chromosome races with Pliocene origins: evidence from mtDNA. Heredity. 86(3):303–312.
  • Nelson GJ. 1975. Reviews: biogeography, the vicariance paradigm, and continental drift. Systematic Zoology. 24:490–504.
  • Newnham R, Mcglone M, Moar N, Wilmshurst J, Vandergoes M. 2013. The vegetation cover of New Zealand at the Last Glacial Maximum. Quaternary Science Reviews. 74:202–214. doi:10.1016/j.quascirev.2012.08.022.
  • Nielsen SV, Bauer AM, Jackman TR, Hitchmough RA, Daugherty CH. 2011. New Zealand geckos (Diplodactylidae): cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities. Mol Phylogenet Evol. 59(1):1–22. doi:10.1016/j.ympev.2010.12.007.
  • O’Neill SB, Buckley TR, Jewell TR, Ritchie PA. 2009. Phylogeographic history of the New Zealand stick insect Niveaphasma annulata (Phasmatodea) estimated from mitochondrial and nuclear loci. Mol Phylogenet Evol. 53(2):523–536. doi:10.1016/j.ympev.2009.07.007.
  • Painting CJ, Myers S, Holwell GI, Buckley TR. 2017. Phylogeography of the New Zealand giraffe weevil Lasiorhynchus barbicornis (Coleoptera: Brentidae): A comparison of biogeographic boundaries. Biological Journal of the Linnean Society. 122(1):13–28. doi:10.1093/biolinnean/blx051.
  • Pons J, Fujisawa T, Claridge EM, Anthony Savill R, Barraclough TG, Vogler AP. 2011. Deep mtDNA subdivision within Linnean species in an endemic radiation of tiger beetles from New Zealand (genus Neocicindela). Mol Phylogenet Evol. 59(2):251–262. doi:10.1016/j.ympev.2011.02.013.
  • Provan J, Bennett KD. 2008. Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol. 23(10):564–571. doi:10.1016/j.tree.2008.06.010.
  • Rawlence NJ, Metcalf JL, Wood JR, Worthy TH, Austin JJ, Cooper A. 2012. The effect of climate and environmental change on the megafaunal moa of New Zealand in the absence of humans. Quaternary Science Reviews 50:141–153. doi:10.1016/j.quascirev.2012.07.004
  • Rawlence NJ, Potter BCM, Dussex N, Scarsbrook L, Orlovich DA, Waters JM, McGlone M, Knapp M. 2021. Plio-Pleistocene environmental changes shape present day phylogeography of New Zealand’s southern beeches (Nothofagaceae). New Zealand Journal of Botany. 59(1):55–71. doi:10.1080/0028825X.2020.1791915.
  • Rissler LJ. 2016. Union of phylogeography and landscape genetics. Proc Natl Acad Sci U S A. 113(29):8079–8086. doi:10.1073/pnas.1601073113.
  • Robertson BC, Steeves TE, McBride KP, Goldstein SJ, Williams M, Gemmell NJ. 2007. Phylogeography of the New Zealand blue duck (Hymenolaimus malacorhynchos): implications for translocation and species recovery. Conserv Genet. 8(6):1431–1440. doi:10.1007/s10592-007-9294-2.
  • Rogers GM. 1989. Beech and conifer community interactions in Moawhango Ecological Region, North Island, New Zealand. New Zealand Journal of Ecology. 12:47–61.
  • Seidel M, Sýkora V, Leschen RAB, Clarkson B, Fikáček M. 2021. Ancient relicts or recent immigrants? Different dating strategies alter diversification scenarios of New Zealand aquatic beetles (Coleoptera: Hydrophilidae: Berosus). Molecular Phylogenetics and Evolution. 163:107241. doi:10.1016/j.ympev.2021.107241.
  • Shepherd LD, de Lange PJ, Perrie LR, Heenan PB. 2017. Chloroplast phylogeography of New Zealand Sophora trees (Fabaceae): extensive hybridization and widespread Last Glacial Maximum survival. Journal of Biogeography. 44(7):1640–1651. doi:10.1111/jbi.12963
  • Shepherd LD, Frericks J, Biggs PJ, de Lange PJ. 2019. Phylogeography of the endemic New Zealand tree Entelea arborescens (whau; Malvaceae). New Zealand Journal of Botany. 57(3):154–168. doi:10.1080/0028825X.2019.1577277.
  • Shepherd LD, Perrie LR, Brownsey PJ. 2007. Fire and ice: volcanic and glacial impacts on the phylogeography of the New Zealand forest fern Asplenium hookerianum. Mol Ecol. 16(21):4536–4549. doi:10.1111/j.1365-294X.2007.03451.x.
  • Shepherd LD, Perrie LR. 2011. Microsatellite DNA analyses of a highly disjunct New Zealand tree reveal strong differentiation and imply a formerly more continuous distribution. Molecular Ecology. 20(7):1389–1400. doi:10.1111/j.1365-294X.2011.05017.x.
  • Shepherd LD, Simon S, Langton-Myers S, Morgan-Richards M. 2022. Insights into Aotearoa New Zealand’s biogeographic history provided by the study of natural hybrid zones. Journal of the Royal Society of New Zealand. DOI: 10.1080/03036758.2022.2061020.
  • Suggate RP, Almond PC. 2005. The Last Glacial Maximum (LGM) in western South Island, New Zealand: implications for the global LGM and MIS 2. Quaternary Science Reviews. 24(16–17):1923–1940. doi:10.1016/j.quascirev.2004.11.007.
  • Tardelli Canedo P, Baker CM, Morisawa R, Pessereau EJ, Boyer SL. 2021. Phylogeography of Neopurcellia salmoni, a widespread mite harvestman from the South Island of New Zealand, with the first report of male polymorphism in the suborder Cyphophthalmi (Arachnida: Opiliones). The Journal of Arachnology. 49(2):205–216. doi:10.1636/JoA-S-20-003.
  • Te Punga MT. 1954. The Late Tertiary and Quaternary geological history of western Wellington [PhD]. Wellington: Victoria University of Wellington.
  • Trewick S, Bland K. 2012. Fire and slice: palaeogeography for biogeography at New Zealand’s North Island/South Island juncture. Journal of the Royal Society of New Zealand. 42(3):153–183. doi:10.1080/03036758.2010.549493.
  • Trewick SA, Morgan-Richards M. 2005. After the deluge: mitochondrial DNA indicates Miocene radiation and Pliocene adaptation of tree and giant weta (Orthoptera: Anostostomatidae). J Biogeogr. 32(2):295–309. doi:10.1111/j.1365-2699.2004.01179.x.
  • Trewick SA, Olley L. 2016. Spatial size dimorphism in New Zealand’s last endemic raptor, the Karearea Falco novaeseelandiae, coincides with a narrow sea strait. Ibis. 158(4):747–761. doi:10.1111/ibi.12398.
  • Trewick SA, Pilkington S, Shepherd LD, Gibb GC, Morgan-Richards M. 2017. Closing the gap: avian lineage splits at a young, narrow seaway imply a protracted history of mixed population response. Mol Ecol. 26(20):5752–5772. doi:10.1111/mec.14323.
  • Trewick SA. 2001. Scree weta phylogeography: surviving glaciation and implications for Pleistocene biogeography in New Zealand. N Z J Zool. 28(3):291–298. doi:10.1080/03014223.2001.9518271.
  • Trewick SA, Wallis GP. 2001. Bridging the “beech-gap”: New Zealand invertebrate phylogeography implicates Pleistocene glaciation and Pliocene isolation. Evolution. 55(11):2170–2180.
  • Trewick SA, Wallis GP, Morgan-Richards M. 2011. The invertebrate life of New Zealand: A phylogeographic approach. Insects. 2(3):297–325. doi:10.3390/insects2030297.
  • Vandergoes MJ, Fitzsimons SJ. 2003. The Last Glacial-Interglacial Transition (LGIT) in south westland, New Zealand: paleoecological insight into mid-latitude southern hemisphere climate change. Quat Sci Rev. 22(14):1461–1476. doi:10.1016/S0277-3791(03)00074-X.
  • Wagstaff SJ, Clarkson BR. 2012. Systematics and ecology of the Australasian genus Empodisma (Restionaceae) and description of a new species from peatlands in northern New Zealand. PhytoKeys. 13:39–79. doi:10.3897/phytokeys.13.3259.
  • Wallis GP, Jorge F. 2018. Going under down under? Lineage ages argue for extensive survival of the Oligocene marine transgression on Zealandia. Molecular Ecology. 27(22):4368–4396. doi:10.1111/mec.14875.
  • Wallis GP, Trewick SA. 2009. New Zealand phylogeography: evolution on a small continent. Molecular Ecology. 18(17):3548–3580. doi:10.1111/j.1365-294X.2009.04294.x.
  • Wallis GP, Waters JM, Upton P, Craw D. 2016. Transverse Alpine speciation driven by glaciation. Trends in Ecology & Evolution. 31(12):916–926. doi:10.1016/j.tree.2016.08.009.
  • Wardle P. 1963. Evolution and distribution of the New Zealand flora, as affected by quaternary climates. New Zealand Journal of Botany. 1(1):3–17. doi:10.1080/0028825X.1963.10429318.
  • Waters JM, Burridge CP, Craw D. 2020. River capture and freshwater biological evolution: A review of Galaxiid Fish Vicariance. Diversity. 12(6):216. doi:10.3390/d12060216.
  • Waters JM, Fraser CI, Hewitt GM. 2013. Founder takes all: density-dependent processes structure biodiversity. Trends in Ecology & Evolution. 28(2):78–85. doi:10.1016/j.tree.2012.08.024.
  • Waters JM, Rowe DL, Apte S, King TM, Wallis GP, Anderson L, Norris RJ, Craw D, Burridge CP. 2007. Geological dates and molecular rates: Rapid divergence of rivers and their biotas. Syst Biol. 56(2):271–282. doi:10.1080/10635150701313855.
  • Weir JT, Haddrath O, Robertson HA, Colbourne RM, Baker AJ. 2016. Explosive ice age diversification of kiwi. Proc Natl Acad Sci USA. 113(38):E5580–E5587. doi:10.1073/pnas.1603795113.
  • Weston KA, Robertson BC. 2015. Population structure within an alpine archipelago: strong signature of past climate change in the New Zealand rock wren (Xenicus gilviventris). Molecular Ecology. 24(18):4778–4794. doi:10.1111/mec.13349.
  • Winterbourn MJ, Pohe SR, Goldstien SJ. 2017. Genetic and phenotypic variability in Stenoperla prasina (Newman, 1845) (Plecoptera: Eustheniidae) in relation to latitude and altitude in New Zealand. Aquatic Insects. 38(1–2):49–65. doi:10.1080/01650424.2017.1302091.
  • Withers SJ, Parsons S, Hauber ME, Kendrick A, Lavery SD. 2021. Genetic divergence between isolated populations of the North Island New Zealand Rifleman (Acanthisitta chloris granti) implicates ancient biogeographic impacts rather than recent habitat fragmentation. Ecology and Evolution. 11(11):5998–6014. doi:10.1002/ece3.7358.
  • Zamudio KR, Bell RC, Mason NA. 2016. Phenotypes in phylogeography: species’ traits, environmental variation, and vertebrate diversification. Proc Natl Acad Sci U S A. 113(29):8041–8048. doi:10.1073/pnas.1602237113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.