638
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Key questions on the evolution and biogeography of New Zealand alpine insects

ORCID Icon, ORCID Icon & ORCID Icon
Pages 30-54 | Received 11 Aug 2022, Accepted 25 Sep 2022, Published online: 09 Oct 2022

References

  • Addo-Bediako A, Chown SL, Gaston KJ. 2001. Revisiting water loss in insects: a large scale view. Journal of Insect Physiology. 47(12):1377–1388.
  • Addo-Bediako A, Chown SL, Gaston KJ. 2002. Metabolic cold adaptation in insects: a large-scale perspective. Functional Ecology. 16(3):332–338.
  • Barker PF, Filippelli GM, Florindo F, Martin EE, Scher HD. 2007. Onset and role of the Antarctic Circumpolar Current. Deep-Sea Research Part II-Topical Studies in Oceanography. 54(21-22):2388–2398.
  • Barratt BIP. 2007. Conservation status of Prodontria (Coleoptera: Scarabaeidae) species in New Zealand. Journal of Insect Conservation. 11(1):19–27.
  • Barratt BIP, Patrick BH. 1987. Insects of snow tussock grassland on the East Otago Plateau. New Zealand Entomologist. 10:69–98.
  • Barratt BIP, Kuschel G. 1996. Broad-nosed weevils (Curculionidae: Brachycerinae: Entimini) of the Lammermoor and Rock and Pillar Ranges in Otago, with descriptions of four new species of Irenimus. New Zealand Journal of Zoology. 23(4):359–374.
  • Batt GE, Braun J, Kohn BP, McDougall I. 2000. Thermochronological analysis of the dynamics of the Southern Alps, New Zealand. Geological Society of America Bulletin. 112(2):250–266.
  • Baumann S, Anderson B, Chinn T, Mackintosh A, Collier C, Lorrey AM, Rack W, Purdie H, Eaves S. 2021. Updated inventory of glacier ice in New Zealand based on 2016 satellite imagery. Journal of Glaciology. 67(261):13–26.
  • Bell TP, Patterson GB. 2008. A rare alpine skink Oligosoma pikitanga n. sp (Reptilia: Scincidae) from Llawrenny Peaks, Fiordland, New Zealand. Zootaxa. 1882: 57–68.
  • Bigelow RS. 1967. The grasshoppers (Acrididae) of New Zealand. University of Canterbury Publications 9: 1–111.
  • Block W, Wharton DA, Sinclair BJ. 1998. Cold tolerance of a New Zealand alpine cockroach, Celatoblatta quinquemaculata (Dictyoptera, Blattidae). Physiological Entomology. 23(1):1–6.
  • Boothroyd I, Cranston P. 1999. The ‘ice worm’ – the immature stages, phylogeny and biology of the glacier midge Zelandochlus (Diptera: Chironomidae). Aquatic Insects. 21(4):303–316.
  • Brook MS, Brock BW. 2005. Valley morphology and glaciation in the Tararua Range, southern North Island, New Zealand. New Zealand Journal of Geology and Geophysics. 48(4):717–724.
  • Brown SDJ. 2017. Austromonticola, a new genus of broad-nosed weevil (Coleoptera, Curculionidae, Entiminae) from montane areas of New Zealand. Zookeys. 707:73–130.
  • Brown SDJ, Leschen RAB. 2018. Kuschelysius, a new Alpine genus of Eugnomine weevil (Coleoptera: Curculionidae: Curculioninae) from New Zealand. Diversity-Basel. 10:3.
  • Buckley TR, Lord NP, Ramon-Laca A, Allwood JS, Leschen RAB. 2020. Multiple lineages of hyper-diverse Zopheridae beetles survived the New Zealand Oligocene Drowning. Journal of Biogeography. 47(4):927–940.
  • Buckley TR, Simon C. 2007. Evolutionary radiation of the cicada genus Maoricicada Dugdale (Hemiptera: Cicadoidea) and the origins of the New Zealand alpine biota. Biological Journal of the Linnean Society. 91(3):419–435.
  • Buckley TR, Simon C, Chambers GK. 2001. Phylogeography of the New Zealand cicada Maoricicada campbelli based on mitochondrial DNA sequences: ancient clades associated with cenozoic environmental change. Evolution. 55(7):1395–1407.
  • Bulgarella M, Trewick SA, Godfrey AJR, Sinclair BJ, Morgan-Richards M. 2015. Elevational variation in adult body size and growth rate but not in metabolic rate in the tree weta Hemideina crassidens. Journal of Insect Physiology. 75:30–38.
  • Campbell DR, Bischoff M, Lord JM, Robertson AW. 2010. Flower color influences insect visitation in alpine New Zealand. Ecology. 91(9):2638–2649.
  • Chinn WG, Gemmell NJ. 2004. Adaptive radiation within New Zealand endemic species of the cockroach genus Celatoblatta Johns (Blattidae): a response to Plio-Pleistocene mountain building and climate change. Molecular Ecology. 13(6):1507–1518.
  • Chinn WGH, Chinn TJH. 2020. Tracking the snow line: responses to climate change by New Zealand alpine invertebrates. Arctic Antarctic and Alpine Research. 52(1):361–389.
  • Clarke DJ. 2011. A revision of the New Zealand endemic Rove Beetle Genus Agnosthaetus Bernhauer (Coleoptera: Staphylinidae). Coleopterists Bulletin. 65(4):1–118.
  • Clarke DJ. 2018. Systematics, natural history, and evolution of the saw-lipped rove beetles (Euaesthetinae): progress and prospects for future research. In: Betz O, Irmler U, Klimaszewski J, editor. Biology of Rove Beetles (Staphylinidae). Cham: Springer; p. 81–114.
  • Connolly S, Ward D. 2020. Utilising museum data for comparative analysis of threatened insect species. Journal of Insect Conservation. 24(5):793–804.
  • Cowley DR. 1978. Studies on the larvae of New Zealand Trichoptera. New Zealand Journal of Zoology. 5(4):639–750.
  • Craig DA, Craig REG, Crosby TK. 2012. Simulidae (Insecta: Diptera). Fauna of New Zealand. 68:1–336.
  • Craw D, King TM, McCulloch GA, Upton P, Waters JM. 2019. Biological evidence constraining river drainage evolution across a subduction-transcurrent plate boundary transition, New Zealand. Geomorphology. 336:119–132.
  • Craw RC. 1999. Molytini (Insecta: Coleoptera: Curculionidae: Molytinae). Christchurch: Manaaki Whenua Press.
  • Delgado JA, Palma RL. 2010. A revision of the genus Podaena Ordish (Insecta: Coleoptera: Hydraenidae). Zootaxa. 2678:1–47.
  • Dennis AB, Dunning LT, Dennis CJ, Sinclair BJ, Buckley TR. 2014. Overwintering in New Zealand stick insects. New Zealand Entomologist. 37(1):35–44.
  • Dennis AB, Dunning LT, Sinclair BJ, Buckley TR. 2015. Parallel molecular routes to cold adaptation in eight genera of New Zealand stick insects. Scientific Reports 5.
  • Denton GH, Putnam AE, Russell JL, Barrell DJA, Schaefer JM, Kaplan MR, Strand PD. 2021. The Zealandia Switch: Ice age climate shifts viewed from Southern Hemisphere moraines. Quaternary Science Reviews. 257:106771.
  • Dieffenbacher-Krall AC, Vandergoesa MJ, Denton GH. 2007. An inference model for mean summer air temperatures in the Southern Alps, New Zealand, using subfossil chironomids. Quaternary Science Reviews. 26(19–21):2487–2504.
  • Dillon ME, Frazier MR, Dudley R. 2006. Into thin air: physiology and evolution of alpine insects. Integrative and Comparative Biology. 46(1):49–61.
  • Donner H, Wilkinson C. 1989. Nepticulidae (Insecta: Lepidoptera). Fauna of New Zealand. 16:1–92.
  • Dugdale JS. 1966. A revision of New Zealand Schoenotenini and Cnephasiini (Lepidoptera – Tortricidae – Tortricinae). New Zealand Journal of Science. 9(4):731.
  • Dugdale JS. 1969. A classification of New Zealand Genera of Tachinidae (Diptera – Cyclorrhapha). New Zealand Journal of Science. 12(3):606.
  • Dugdale JS. 1975. Alpine moths. In: Knox R, editor. New Zealand’s nature heritage. Auckland: Hamlyn; p. 1526–1531.
  • Dugdale JS. 1979. New generic name for the New-Zealand species previously assigned to Simaethis-Auctorum (Lepidoptera, Choreutidae), with description of a new species. New Zealand Journal of Zoology. 6(3):461–466.
  • Dugdale JS. 1988. Lepidoptera - annotated catalogue, and keys to family group taxa. Fauna of New Zealand. 14:1–262.
  • Dugdale JS. 1994. Hepialidae. Fauna of New Zealand. 30:1–164.
  • Dugdale JS, Fleming CA. 1978. New Zealand cicadas of genus Maoricicada (Homoptera: Tibicinidae). New Zealand Journal of Zoology. 5(2):295–340.
  • Dunning LT, Dennis AB, Sinclair BJ, Newcomb RD, Buckley TR. 2014. Divergent transcriptional responses to low temperature among populations of alpine and lowland species of New Zealand stick insects (Micrarchus). Molecular Ecology. 23(11):2712–2726.
  • Dunning LT, Dennis AB, Thomson G, Sinclair BJ, Newcomb RD, Buckley TR. 2013. Positive selection in glycolysis among Australasian stick insects. BMC Evolutionary Biology. 13:215.
  • Dymond JR, Shepherd JD, Newsome PF, Belliss S. 2017. Estimating change in areas of indigenous vegetation cover in New Zealand from the New Zealand Land Cover Database (LCDB). New Zealand Journal of Ecology. 41(1):56–64.
  • Eaves SR, Brook MS. 2021. Glaciers and glaciation of North Island, New Zealand. New Zealand Journal of Geology and Geophysics. 64(1):1–20.
  • Ellis EA, Marshall DC, Hill KBR, Owen CL, Kamp PJJ, Simon C. 2015. Phylogeography of six codistributed New Zealand cicadas and their relationship to multiple biogeographical boundaries suggest a re-evaluation of the Taupo Line. Journal of Biogeography. 42(9):1761–1775.
  • Emerson BC, Wallis GP. 1995. Phylogenetic relationships of the Prodontria (Coleoptera; Scarabaeidae; subfamily Melolonthinae), derived from sequence variation in the mitochondrial cytochrome oxidase II gene. Molecular Phylogenetics and Evolution. 4(4):433–447.
  • Evans AM, Peralta G, van Beest FM, Klijzing K, Peltzer DA. 2021. Invertebrate communities in adjacent Douglas fir and native beech forests in New Zealand. New Zealand Journal of Ecology. 45:2.
  • Fitzsimons JJ, Veit H. 2001. Geology and geomorphology of the European Alps and the Southern Alps of New Zealand – a comparison. Mountain Research and Development. 21(4):340–349.
  • Fleming CA. 1971. New species of cicada from rock fans in southern Wellington, with a review of 3 species with similar songs and habitat. New Zealand Journal of Science. 14(3):443.
  • Fontaine B, Perrard A, Bouchet P. 2012. 21 years of shelf life between discovery and description of new species. Current Biology. 22(22):R943–R944.
  • Foster BJ, McCulloch GA, Waters JM. 2020. Zelandoperla maungatuaensis sp. n. (Plecoptera: Gripopterygidae), a new flightless stonefly species from Otago, New Zealand. New Zealand Journal of Zoology. 47(2):141–147.
  • Fountain ED, Wiseman BH, Cruickshank RH, Paterson AM. 2013. The ecology and conservation of Hadramphus tuberculatus (Pascoe 1877) (Coleoptera: Curculionidae: Molytinae). Journal of Insect Conservation. 17(4):737–745.
  • Gibbs GW. 1980. New Zealand butterflies: identification and natural history. Auckland: Williams Collins Publishers Ltd.
  • Gibbs GW. 1998. Why are some weta (Orthoptera: Stenopelmatidae) vulnerable yet others are common? Journal of Insect Conservation. 2(3-4):161–166.
  • Gibbs GW. 2006. Ghosts of Gondwana. Nelson: Craig Potton Publishing.
  • Giejsztowt J, Classen AT, Deslippe JR. 2020. Climate change and invasion may synergistically affect native plant reproduction. Ecology. 101:1.
  • Given BB. 1960a. The Melolonthinae (Coleoptera) of New Zealand: descriptions of new species, notes on types, and a catalogue. New Zealand Journal of Science. 3:363–381.
  • Given BB. 1960b. A revision of the Melolonthinae of New Zealand. Part 1: the adult beetles. Bulletin of the New Zealand Department of Science, Industry and Research. 102:54–59.
  • Golledge NR, Mackintosh AN, Anderson BM, Buckley KM, Doughty AM, Barrell DJA, Denton GH, Vandergoes MJ, Andersen BG, Schaefer JM. 2012. Last glacial maximum climate in New Zealand inferred from a modelled Southern Alps icefield. Quaternary Science Reviews. 46:30–45.
  • Gordon DP. 2009. New Zealand inventory of biodiversity. Volume two. Kingdom Animalia. Chaetognatha, Ecdysozoa, Ichnofossils. Christchurch: Canterbury University Press. 528 p.
  • Halloy SRP, Mark AF. 2003. Climate-change effects on alpine plant biodiversity: a New Zealand perspective on quantifying the threat. Arctic Antarctic and Alpine Research. 35(2):248–254.
  • Hawes TC. 2011. Mating behavior in the Alpine Tiger Moth, Metacrias huttoni. Journal of Insect Behavior. 24(1):22–33.
  • Hawes TC, Wharton DA. 2011. Freeze fitness in alpine Tiger moth caterpillars and their parasitoids. Oecologia. 167(1):39–48.
  • Heath JE, Heath MS, Sanborn AF. 2022. Cold cicadas and hot rocks: thermal responses and thermoregulation in some New Zealand cicadas (Insecta: Hemiptera: Cicadidae: Cicadettinae: Cicadettini). Journal of Thermal Biology. 107:103273.
  • Heenan PB, McGlone MS. 2013. Evolution of New Zealand alpine and open-habitat plant species during the late Cenozoic. New Zealand Journal of Ecology. 37(1):105–113.
  • Hegg D, Morgan-Richards M, Trewick SA. 2022. High alpine sorcerers: revision of the cave weta genus Pharmacus Pictet & de Saussure (Orthoptera: Rhaphidophoridae: Macropathinae), with the description of six new species and three new subspecies. European Journal of Taxonomy. 808:1–58.
  • Henderson RD, Thompson SM. 1999. Extreme rainfalls in the Southern Alps of New Zealand. Journal of Hydrology. 38(2):309–330.
  • Hoare RJB. 2019. Noctuinae (Insecta: Lepidoptera: Noctuidae). Part 2, Nivetica, Ichneutica. Fauna of New Zealand. 80:1–455.
  • Hoare RJB, Millar IR, Richardson SJ. 2016. The insect fauna of granite sand plains: a naturally rare ecosystem in New Zealand. New Zealand Entomologist. 39(1):1–14.
  • Hughey KFD, Hickling GJ. 2006. Ecologically based policy evaluation: application to ungulate management in New Zealand. Environmental Science & Policy. 9(7-8):639–651.
  • James WHM, Carrivick JL, Quincey DJ, Glasser NF. 2019. A geomorphology based reconstruction of ice volume distribution at the Last Glacial Maximum across the Southern Alps of New Zealand. Quaternary Science Reviews. 219:20–35.
  • Jiao R, Herman F, Seward D. 2017. Late Cenozoic exhumation model of New Zealand: impacts from tectonics and climate. Earth-Science Reviews. 166:286–298.
  • Johns P. 1966. The cockroaches of New Zealand. Records of the Canterbury Museum. 8:93–136.
  • Kalmus H. 1941. The resistance to desiccation of Drosophila mutants affecting body colour. Proceedings of the Royal Society B Biological Science. 130:185–201.
  • Kamp PJJ. 1986. The mid-cenozoic challenger rift system of western New-Zealand and its implications for the age of alpine fault inception. Geological Society of America Bulletin. 97(3):255–281.
  • Kamp PJJ, Green PF, White SH. 1989. Fission-track analysis reveals character of collisional tectonics in New-Zealand. Tectonics. 8(2):169–195.
  • Keegan LJ, White RSA, Macinnis-Ng C. 2022. Current knowledge and potential impacts of climate change on New Zealand’s biological heritage. New Zealand Journal of Ecology. 46:1.
  • Kennett JP. 1986. Miocene to Early Pliocene oxygen and carbon isotope stratigraphy in the southwest pacific, deep-sea drilling project Leg 90. Initial Reports of the Deep Sea Drilling Project. 90:1383–1411.
  • King KJ, Sinclair BJ. 2015. Water loss in tree weta (Hemideina): adaptation to the montane environment and a test of the melanisation–desiccation resistance hypothesis. The Journal of Experimental Biology. 218:1995–2004.
  • Kingsolver JG. 2009. The well-temperatured biologist. American Naturalist. 174(6):755–768.
  • Klimaszewski J, Newton AF, Thayer MK. 1996. A review of the New Zealand rove beetles (Coleoptera: Staphylinidae). New Zealand Journal of Zoology. 23(2):143–160.
  • Klimaszewski J, Watt JC. 1997. Coleoptera: family-group review and keys to identification. Fauna of New Zealand. 37:1–199.
  • Kolesik P, Sarfati MS, Brockerhoff EG, Kelly D. 2007. Description of Eucalyptodiplosis chionochloae sp nov, a cecidomyiid feeding on inflorescences of Chionochloa (Poaceae) in New Zealand. New Zealand Journal of Zoology. 34(2):107–115.
  • Koot EM, Morgan-Richards M, Trewick SA. 2020. An alpine grasshopper radiation older than the mountains, on Ka Tiritiri o te Moana (Southern Alps) of Aotearoa (New Zealand). Molecular Phylogenetics and Evolution. 147:106783.
  • Koot EM, Morgan-Richards M, Trewick SA. 2022. Climate change and alpine adapted insects: modelling environmental envelopes of a grasshopper radiation. Royal Society Open Science. 9:211596.
  • Kroos GC, Waters JM, McCulloch GK. 2021. Does assortative mating contribute to reproductive isolation among sympatric ecotypes of the wing-dimorphic stonefly Zelandoperla fenestrata (Plecoptera: Gripopterygidae)? Austral Entomology. 60(3):571–577.
  • Kuschel G. 1987. The subfamily Molytinae (Coleoptera: Curculionidae): general notes and descriptions of new taxa from New Zealand and Chile. New Zealand Entomologist. 9(1):11–29.
  • Larochelle A, Larivière MC. 2015. Synopsis of the genus Bembidion Latreille in New Zealand (Coleoptera: Carabidae: Bembidiini). Insecta Mundi. 0415:1–78.
  • Larochelle A, Larivière MC. 2017. Synopsis of the tribe Zolini in New Zealand (Coleoptera: Carabidae). Insecta Mundi. 0594:1–110.
  • Larochelle A, Larivière MC. 2021. Synopsis of the tribe Platynini in New Zealand (Coleoptera: Carabidae). Insecta Mundi. 0864:1–96.
  • Lee DE, Lee WG, Mortimer N. 2001. Where and why have all the flowers gone? Depletion and turnover in the New Zealand Cenozoic angiosperm flora in relation to palaeogeography and climate. Australian Journal of Botany. 49(3):341–356.
  • Leihy RI, Chown SL. 2020. Wind plays a major but not exclusive role in the prevalence of insect flight loss on remote islands. Proceedings of the Royal Society B. 287:20202121.
  • Leschen RAB. 2003. Erotylidae (Insecta: Coleoptera: Cucujoidea): phylogeny and review. Fauna of New Zealand. 47:1–108.
  • Leschen RAB, Buckley TR. 2015. Revision and phylogeny of Syrphetodes (Coleoptera: Ulodidae): implications for biogeography, alpinization and conservation. Systematic Entomology. 40(1):143–168.
  • Leschen RA, Reid CA, Nadein KS. 2020. Generic review of New Zealand Chrysomelinae (Coleoptera: Chrysomelidae). Zootaxa. 4740(1):1–66.
  • Lloyd KM, Lee WG, Walker S. 2006. Takahe Valley Hut: a focal point for weed invasion in an isolated area of Fiordland National Park, New Zealand. New Zealand Journal of Ecology. 30(3):371–375.
  • Mark AF, Dickinson KJM, Hofstede RGM. 2000. Alpine vegetation, plant distribution, life forms, and environments in a perhumid New Zealand region: oceanic and tropical high mountain affinities. Arctic Antarctic and Alpine Research. 32(3):240–254.
  • Marris J, Hawke D, Glenny D. 2019. Stable isotope analysis reveals a New Zealand alpine beetle’s lichen diet. Bulletin of the Ecological Society of America. 100(3):e01571.
  • McCulloch GA, Foster BJ, Dutoit L, Harrop TWR, Guhlin J, Dearden PK, Waters JM. 2021. Genomics reveals widespread ecological speciation in flightless insects. Systemic Biology. 70(5):863–876.
  • McCulloch GA, Foster BJ, Ingram T, Waters JM. 2019a. Insect wing loss is tightly linked to the treeline: evidence from a diverse stonefly assemblage. Ecography. 42(4):811–813.
  • McCulloch GA, Oliphant A, Dearden PK, Veale AJ, Ellen CW, Waters JM. 2019b. Comparative transcriptomic analysis of a wing-dimorphic stonefly reveals candidate wing loss genes. Evodevo. 10:1.
  • McCulloch GA, Waters JM. 2018a. Testing for seasonality in alpine streams: How does altitude affect freshwater insect life cycles? Freshwater Biology. 63(5):483–491.
  • McCulloch GA, Waters JM. 2018b. Does wing reduction influence the relationship between altitude and insect body size? A case study using New Zealand’s diverse stonefly fauna. Ecology and Evolution. 8(2):953–960.
  • McGlone MS. 1985. Plant biogeography and the Late Cenozoic History of New-Zealand. New Zealand Journal of Botany. 23(4):723–749.
  • McGlone MS, Neall VE, Clarkson BD. 1988. The effect of recent volcanic events and climatic changes on the vegetation of Mt Egmont (Mt Taranaki), New-Zealand. New Zealand Journal of Botany. 26(1):123–144.
  • McLellan ID. 1975. The freshwater insects. In: Kuschel G, editor. Biogeography and ecology in New Zealand. The Hague: Dr. W. Junk, Publishers; p. 537–559.
  • McLellan ID. 1977. New alpine and southern Plecoptera from New Zealand, and a new classification of the Gripopterygidae. New Zealand Journal of Zoology. 4:119–147.
  • Minoshima YN, Seidel M, Wood JR, Leschen RAB, Gunter NL, Fikacek M. 2018. Morphology and biology of the flower-visiting water scavenger beetle genus Rygmodus (Coleoptera: Hydrophilidae). Entomological Science. 21(4):363–384.
  • Morgan-Richards M, Gibbs GW. 1996. Colour, allozyme and karyotype variation show little concordance in the New Zealand giant scree weta Deinacrida connectens (Orthoptera: Stenopelmatidae). Hereditas. 125(2-3):265–276.
  • Morgan-Richards M, Gibbs GW. 2001. A phylogenetic analysis of New Zealand giant and tree weta (Orthoptera: Anostostomatidae : Deinacrida and Hemideina) using morphological and genetic characters. Invertebrate Taxonomy. 15(1):1–12.
  • Morris M. 1989. Evidence for diapause in indiginous New Zealand insects. New Zealand Journal of Zoology. 16:431–434.
  • O’Donnell CFJ, Weston KA, Monks JM. 2017. Impacts of introduced mammalian predators on New Zealand’s alpine fauna. New Zealand Journal of Ecology. 41(1):1–22.
  • O’Neill SB, Buckley TR, Jewell TR, Ritchie PA. 2009. Phylogeographic history of the New Zealand stick insect Niveaphasma annulata (Phasmatodea) estimated from mitochondrial and nuclear loci. Molecular Phylogenetics and Evolution. 53(2):523–536.
  • Ordish RG. 1966. A systematic revision of the New Zealand water beetles (Coleoptera: Dytiscidae). Records of the Dominon Museum. 5(22):217–264.
  • Ordish RG. 1984. Hydraenidae (Insecta: Coleoptera). Fauna of New Zealand. 6:1–56.
  • Paler K, Monks A, Leschen RAB, Ward DF. 2021. Determining species diversity and functional traits of beetles for monitoring the effects of environmental change in the New Zealand alpine zone. Ecological Indicators. 121:107100.
  • Parkes JP, Forsyth DM. 2008. Interspecific and seasonal dietary differences of Himalayan thar, chamois and brushtail possums in the central Southern Alps, New Zealand. New Zealand Journal of Ecology. 32(1):46–56.
  • Patrick B. 1982. Lepidoptera of Danseys Pass, Otago. New Zealand Entomologist. 7(3):332–336.
  • Patrick BH. 1989. Survey of Lepidoptera at Tara Hills Research Station. New Zealand Entomologist. 12:42–48.
  • Patrick BH, Lyford BM, Ward JB, Barratt BIP. 1992. Lepidoptera and other insects of the Rastus Burn Basin, the Remarkables, Otago. Journal of the Royal Society of New Zealand. 22(4):265–278.
  • Pittari A, Prentice ML, McLeod OE, Zadeh EY, Kamp PJJ, Danisik M, Vincent KA. 2021. Inception of the modern North Island (New Zealand) volcanic setting: spatio-temporal patterns of volcanism between 3.0 to 0.9 Ma. New Zealand Journal of Geology and Geophysics. 64(2-3):250–272.
  • Prebble JG, Reichgelt T, Mildenhall DC, Greenwood DR, Raine JI, Kennedy EM, Seebeck HC. 2017. Terrestrial climate evolution in the Southwest Pacific over the past 30 million years. Earth and Planetary Science Letters. 459:136–144.
  • Primack RB. 1983. Insect pollination in the New-Zealand mountain flora. New Zealand Journal of Botany. 21(3):317–333.
  • Ramlov H, Bedford J, Leader J. 1992. Freezing tolerance of the New Zealand Alpine Weta, Hemideina maori Hutton [Orthoptera, Stenopelmatidae]. Journal of Thermal Biology. 17(1):51–54.
  • Rees ABH, Holt KA, Hinojosa JL, Newnham RM, Eaves S, Vandergoes MJ, Sessions AL, Wilmshurst JM. 2021. Duelling narratives of chironomids and pollen explain climate enigmas during the Last Glacial-Interglacial transition in North Island New Zealand. Quaternary Science Reviews. 263:106997.
  • Roberts RM. 1977. Overwintering strategies in New Zealand insects. Tuatara. 23:1–9.
  • Schellart WP, Lister GS, Toy VG. 2006. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes. Earth-Science Reviews. 76(3-4):191–233.
  • Seago AE, Leschen RAB, Newton AF. 2015. Two new high altitude genera of Camiarini (Coleoptera: Leiodidae: Camiarinae) from Australia and New Zealand. Zootaxa. 3957(3):300–312.
  • Seward D, Nathan S. 1990. Uplift history of South Westland using the fission-track dating technique. New Zealand Journal of Geology and Geophysics. 33(2):201–204.
  • Sinclair BJ. 1997. Seasonal variation in freezing tolerance of the New Zealand alpine cockroach Celatoblatta quinquemaculata. Ecological Entomology. 22(4):462–467.
  • Sinclair BJ. 2000. Water relations of the freeze-tolerant New Zealand alpine cockroach Celatoblatta quinquemaculata (Dictyoptera: Blattidae). Journal of Insect Physiology. 46(6):869–876.
  • Sinclair BJ, Chown SL. 2005. Climatic variability and hemispheric differences in insect cold tolerance: support from Southern Africa. Functional Ecology. 19(2):214–221.
  • Sinclair BJ, Lord JM, Thompson CM. 2001. Microhabitat selection and seasonality of alpine invertebrates. Pedobiologia. 45(2):107–120.
  • Sinclair BJ, Vernon P, Klok CJ, Chown SL. 2003. Insects at low temperatures: an ecological perspective. Trends in Ecology & Evolution. 18(5):257–262.
  • Sinclair BJ, Wharton DA. 1997. Avoidance of intracellular freezing by the freezing-tolerant New Zealand Alpine Weta Hemideina maori (Orthoptera: Stenopelmatidae). Journal of Insect Physiology. 43(7):621–625.
  • Sinclair BJ, Worland MR, Wharton DA. 1999. Ice nucleation and freezing tolerance in New Zealand alpine and lowland weta, Hemideina spp. (Orthoptera; Stenopelmatidae). Physiological Entomology. 24(1):56–63.
  • Sokolov IM. 2019. A review of the genus Pelodiaetus Jeannel Coleoptera, Carabidae, Anillini) of New Zealand, with re-description of the genus, description of a new species, and notes on the evolutionary history. Zookeys. 879:33–56.
  • Sømme L. 1989. Adaptations of terrestrial arthropods to the alpine enviornment. Biological Reviews. 64:367–407.
  • Steel WO. 1953. A new genus and species of Phloeocharinae (Col., Staphylinidae) from New Zealand. Entomologist’s Monthly Magazine. 89:162–164.
  • Stringer IAN, Hitchmough RA, Dugdale JS, Edwards E, Hoare RJB, Patrick BH. 2012. The conservation status of New Zealand Lepidoptera. New Zealand Entomologist. 35(2):120–127.
  • Suren AM. 1991. Bryophytes as invertebrate habitat in two New Zealand alpine streams. Freshwater Biology. 26(3):399–418.
  • Thomas MC. 2003. The Brontini of the world: a generic review of the tribe (Coleoptera: Silvanidae: Brontinae). Insecta Mundi. 17:1–31.
  • Tippett JM, Kamp PJJ. 1993. Fission-track analysis of the Late Cenozoic vertical kinematics of Continental Pacific Crust, South Island. New-Zealand. Journal of Geophysical Research-Solid Earth. 98(B9):16119–16148.
  • Tomiolo S, Harsch MA, Duncan RP, Hulme PE. 2016. Influence of climate and regeneration microsites on Pinus contorta invasion into an alpine ecosystem in New Zealand. AIMS Environmental Science. 3(3):525–540.
  • Toxopeus J, Sinclair BJ. 2018. Mechanisms underlying insect freeze tolerance. Biological Reviews. 93(4):1891–1914.
  • Trewick SA, Bland KJ. 2012. Fire and slice: palaeogeography for biogeography at New Zealand’s North Island/South Island juncture. Journal of the Royal Society of New Zealand. 42(3):153–183.
  • Trewick SA, Morgan-Richards M. 2005. After the deluge: mitochondrial DNA indicates Miocene radiation and Pliocene adaptation of tree and giant weta (Orthoptera: Anostostomatidae). Journal of Biogeography. 32(2):295–309.
  • Twort VG, Newcomb RD, Buckley TR. 2019. New Zealand tree and Giant Weta (Orthoptera) Transcriptomics Reveal divergent selection patterns in metabolic loci. Genome Biology and Evolution. 11(4):1293–1306.
  • Tyrrell C, Wharton DA, Ramlov H, Moller H. 1994. Cold tolerance of an endoparasitic nematode within a freezing-tolerant orthopteran host. Parasitology. 109:367–372.
  • Veale AJ, Foster BJ, Dearden PK, Waters JM. 2018. Genotyping-by-sequencing supports a genetic basis for wing reduction in an alpine New Zealand stonefly. Scientific Reports 8.
  • Ward DF. 2014. Understanding sampling and taxonomic biases recorded by citizen scientists. Journal of Insect Conservation. 18(4):753–756.
  • Wardhaugh CW, Leschen RAB. 2021. Revision of the endemic Chalcolampra speculifera Sharp, 1882 group (Coleoptera: Chrysomelidae: Chrysomelinae). New Zealand Entomologist. 44(1):26–37.
  • Wardle K, Fahey BD. 2002. Monitoring vegetation changes at Treble Cone Ski Field, New Zealand. Science for Conservation. 50 p.
  • Wardle P. 1963. Evolution and distribution of the New Zealand flora, as affected by quaternary climates. New Zealand Journal of Botany. 1:3–17.
  • Watt JC. 1969. Notes on the natural history of Tenebrionidae (Coleoptera) in Canterbury. New Zealand Entomologist. 4(2):47–49.
  • Watt JC. 1975. The terrestrial insects. In: Kuschel G, editor. Biogeography and ecology in New Zealand. The Hague: DR. W. Junk; p. 507–535.
  • Watt JC. 1980. Notes on pitfall trapping on Headlong Peak, Mount Aspiring National Park. New Zealand Entomologist. 7(2):184–191.
  • Watt JC. 1984. A review of some New Zealand Scarabaeidae (Coleoptera). New Zealand Entomologist. 8(1):4–24.
  • Wharton DA. 2011. Cold tolerance of New Zealand alpine insects. Journal of Insect Physiology. 57(8):1090–1095.
  • White EG. 1991. The changing abundance of moths in a Tussock Grassland, 1962–1989, and 50-year to 70-year trends. New Zealand Journal of Ecology. 15(1):5–22.
  • White EG, Sedcole JR. 1991. A 20-year record of alpine grasshopper abundance, with interpretations for climate change. New Zealand Journal of Ecology. 15(2):139–152.
  • Winkworth RC, Wagstaff SJ, Glenny D, Lockhart PJ. 2005. Evolution of the New Zealand mountain flora: origins, diversification and dispersal. Organisms Diversity & Evolution. 5(3):237–247.
  • Winstanley WJ, Rowe RJ. 1980. The larval habitat of Uropetala carovei carovei (Odonata, Petaluridae) in the North Island of New Zealand, and the geographical limits of the subspecies. New Zealand Journal of Zoology. 7(1):127–134.
  • Winterbourn MJ, Cadbury S, Ilg C, Milner AM. 2008. Mayfly production in a New Zealand glacial stream and the potential effect of climate change. Hydrobiologia. 603:211–219.
  • Woodward CA, Shulmeister J. 2006. New Zealand chironomids as proxies for human-induced and natural environmental change: transfer functions for temperature and lake production (chlorophyll a). Journal of Paleolimnology. 36(4):407–429.
  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 292(5517):686–693.
  • Zernack AV, Procter JN, Cronin SJ. 2009. Sedimentary signatures of cyclic growth and destruction of stratovolcanoes: A case study from Mt. Taranaki, New Zealand. Sedimentary Geology. 220(3-4):288–305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.