190
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

A starting-point strategy for interior-point algorithms for shakedown analysis of engineering structures

, &
Pages 648-668 | Received 27 Nov 2012, Accepted 04 Feb 2013, Published online: 19 Jun 2013

REFERENCES

  • Akoa, F. B., A. Hachemi, L. T. H. An, S. Mouhtamid, and P. D. Tao. 2007. “Application of lower bound direct method to engineering structures.” Journal of Global Optimization 37 (4): 609–630. doi: 10.1007/s10898-006-9069-1
  • Andersen, E. D., B. Jensen, J. Jensen, R. Sandvik, and U. Worsøe. 2009, MOSEK Version 6. Technical Report TR-2009-3, MOSEK, Copenhagen, Denmark. http://docs.mosek.com/whitepapers/mosek6.pdf
  • Atkociunas, J., D. Merkeviciute and A. Venskus. 2008. “Optimal shakedown design of bar systems: Strength, stiffness and stability constraints. Computers & Structures 86 (17–18): 1757–1768. doi: 10.1016/j.compstruc.2008.01.008
  • Atkociunas, J., and A. Venskus. 2011. “Optimal shakedown design of frames under stability conditions according to standards.” Computers & Structures 89 (3–4): 435–443. doi: 10.1016/j.compstruc.2010.11.014
  • Belytschko, T. 1972. “Plane stress shakedown analysis by finite elements. International Journal of Mechanical Sciences 14 (9): 619–625. doi: 10.1016/0020-7403(72)90061-6
  • Benson, H., and D. Shanno. 2007. “An exact primal–dual penalty method approach to warmstarting interior-point methods for linear programming.” Computational Optimization and Applications 38 (2): 371–399. doi: 10.1007/s10589-007-9048-6
  • Benson, H., D. Shanno, and R. Vanderbei. 2002. “Interior-point methods for nonconvex nonlinear programming: Filter methods and merit functions. Computational Optimization and Applications 23 (2): 257–272. doi: 10.1023/A:1020533003783
  • Bisbos, C., Makrodimopoulos, A., and Pardalos, P., 2005. “Second-order cone programming approaches to static shakedown analysis in steel plasticity. Optimization Methods and Software 20 (1): 25–52. doi: 10.1080/1055678042000216003
  • Brasile, S., R. Casciaro, and G. Formica. 2010. “Finite Element formulation for nonlinear analysis of masonry walls.” Computers & Structures 88 (3–4): 135–143. doi: 10.1016/j.compstruc.2009.08.006
  • Byrd, R. H., M. E. Hribar, and J. Nocedal. 2000. “An interior point algorithm for large-scale nonlinear programming.” SIAM Journal on Optimization 9 (4): 877–900. doi: 10.1137/S1052623497325107
  • Carvelli, V., Z. Z. Cen, Y. Liu, and G. Maier. 1999. “Shakedown analysis of defective pressure vessels by a kinematic approach.” Archives of Applied Mechanics 69: 751–764. doi: 10.1007/s004190050254
  • Chen, H., and A. Ponter. 2001. “Shakedown and limit analyses for 3-D structures using the linear matching method.” International Journal of Pressure Vessels and Piping 78 (6): 443–451. doi: 10.1016/S0308-0161(01)00052-7
  • Chen, S., Y. Liu, and Z. Cen. 2008. “Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming.” Computer Methods in Applied Mechanics and Engineering 197 (45–48): 3911–3921. doi: 10.1016/j.cma.2008.03.009
  • Christiansen, E., and K. Andersen. 1999. “Computation of collapse states with von Mises type yield condition.” International Journal for Numerical Methods in Engineering 46 (8): 1185–1202. doi: 10.1002/(SICI)1097-0207(19991120)46:8<1185::AID-NME743>3.0.CO;2-N
  • Colombo, M., J. Gondzio, and A. Grothey. 2011. “A warm-start approach for large-scale stochastic linear programs.” Mathematical Programming, Series A 127: 371–397. doi: 10.1007/s10107-009-0290-9
  • Conn, Andrew, Nick Gould, and Philippe Toint. 1992. LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A). Springer Series on Computational Mathematics Vol. 17. Heidelberg: Springer-Verlag.
  • Corradi, L., and A. Zavelani. 1974. “A linear programming approach to shakedown analysis of structures.” Computer Methods in Applied Mechanics and Engineering 3 (1): 37–53. doi: 10.1016/0045-7825(74)90041-3
  • El-Bakry, A. S., R. A. Tapia, T. Tsuchiya, and Y. Zhang. 1996. “On the formulation and theory of the Newton interior-point method for nonlinear programming.” Journal of Optimization Theory and Applications 89 (3): 507–541. doi: 10.1007/BF02275347
  • Forsgren, Anders, Philip E. Gill, and Margaret H. Wright. 2002. “Interior methods for nonlinear optimization.” SIAM Review 44 (4): 525–597. doi: 10.1137/S0036144502414942
  • Franco, J., F. Barros, and A. Ponter. 2009. “An improved adaptive formulation for the computation of limit analysis problems of thin axisymmetrical shells.” Computers & Structures 87 (23–24): 1602–1610. doi: 10.1016/j.compstruc.2009.08.014
  • Garcea, G., G. Armentano, S. Petrolo, and R. Casciaro. 2005. “Finite element shakedown analysis of two-dimensional structures.” International Journal for Numerical Methods in Engineering 63 (8): 1174–1202. doi: 10.1002/nme.1316
  • Gertz, M., J. Nocedal, and A. Sartenaer. 2004. “Starting-point strategy for nonlinear interior methods.” Applied Mathematics Letters 17 (8): 945–952. doi: 10.1016/j.aml.2003.09.005
  • Giambanco, G., P. Fuschi, and S. Rizzo. 1994. “Shakedown optimum design of reinforced concrete framed structures.” Engineering Optimization 23 (2): 141–154. doi: 10.1080/03052159408941350
  • Gondzio, J., and A. Grothey. 2008. “A new unblocking technique to warmstart interior-point methods based on sensitivity analysis.” SIAM Journal on Optimization 19 (3): 1184–1210. doi: 10.1137/060678129
  • Griva, I., D. F. Shanno, R. J. Vanderbei, and H. Y. Benson. 2008. “Global convergence analysis of a primal–dual interior-point method for nonlinear programming.” Algorithmic Operations Research 3 (1): 12–19.
  • Groß-Weege, J. 1997. “On the numerical assessment of the safety factor of elastic–plastic structures under variable loading.” International Journal of Mechanical Sciences 39 (4): 417–433. doi: 10.1016/S0020-7403(96)00039-2
  • Hachemi, A., L. T. H. An, S. Mouhtamid, and P. D. Tao. 2004. “Large-scale nonlinear programming and lower bound direct method in engineering applications.” In Modelling, Computation and Optimization in Information Systems and Management Sciences, edited by L. T. H. An and P. D. Tao, 299–310. London: Hermes Science.
  • Hachemi, A., S. Mouhtamid, and D. Weichert. 2005. “Progress in shakedown analysis with applications to composites.” Archives of Applied Mechanics 74: 762–772. doi: 10.1007/s00419-005-0413-6
  • Herskovits, J., 1986. “A two-stage feasible directions algorithm for nonlinearly constrained optimization.” Mathematical Programming 36: 19–38. doi: 10.1007/BF02591987
  • König, J., 1987. Shakedown of Elastic–Plastic Structures. Amsterdam: Elsevier.
  • Krabbenhøft, K., and L. Damkilde. 2003. “A general nonlinear optimization algorithm for lower bound limit analysis.” International Journal for Numerical Methods in Engineering 56 (2): 165–184. doi: 10.1002/nme.551
  • Krabbenhøft, K., A. V. Lyamin, and S. W. Sloan. 2007a. “Bounds to shakedown loads for a class of deviatoric plasticity models.” Computational Mechanics 39: 879–888. doi: 10.1007/s00466-006-0076-3
  • Krabbenhøft, K., A. V. Lyamin, and S. W. Sloan. 2007b. “Formulation and solution of some plasticity problems as conic programs.” International Journal of Solids and Structures 44 (5): 1533–1549. doi: 10.1016/j.ijsolstr.2006.06.036
  • Krabbenhøft, K., A. V. Lyamin, S. W. Sloan, and P. Wriggers. 2000. “An interior-point algorithm for elastoplasticity.” International Journal for Numerical Methods in Engineering 69 (3): 592–626. doi: 10.1002/nme.1771
  • Kuhn, H., and A. Tucker. 1950. “Nonlinear programming.” In Second Berkeley Symposium on Mathematical Statistics and Probability, 31 July–12 August 1950, Statistical Laboratory of the University of California, Berkeley, edited by Jerzy Neyman, 481–492. Berkeley, CA: University of California Press.
  • Liu, Y., X. F. Zhang, and Z. Z. Cen. 2005. “Lower bound shakedown analysis by the symmtric Galerkin boundary element method.” International Journal of Plasticity 21 (1): 21–42. doi: 10.1016/j.ijplas.2004.01.003
  • Lyamin, A., and S. Sloan, 2002. “Lower bound limit analysis using nonlinear programing.” International Journal for Numerical Methods in Engineering 55 (5): 573–611. doi: 10.1002/nme.511
  • Makrodimopoulos, A., and C. Martin. 2006. “Lower bound limit analysis of cohesive–frictional materials using second-order cone programming.” International Journal for Numerical Methods in Engineering 66 (4): 604–634. doi: 10.1002/nme.1567
  • Malena, M., and R. Casciaro. 2008. “Finite element shakedown analysis of reinforced concrete 3D frames.” Computers & Structures 86 (11–12): 1176–1188. doi: 10.1016/j.compstruc.2007.12.001
  • Mehrotra, S. 1992. “On the implementation of a primal–dual interior point method.” SIAM Journal on Optimization 2 (4): 575–601. doi: 10.1137/0802028
  • Melan, E. 1938. “Zur Plastizität des räumlichen Kontinuums.” Ingenieur-Archiv 9: 116–126. doi: 10.1007/BF02084409
  • Morales, J., J. Nocedal, R. W. Waltz, G. Lie, and J.-P. Goux. 2003. “Assessing the potential of interior methods for nonlinear optimization.” In Large-scale PDE-Constrained Optimization, edited by L. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloemen Waander, Vol. 30, 167–183. Berlin: Springer.
  • Morelle, P. 1991. “A practical use of duality in shakedown and limit analysis of structures.” Engineering Optimization 18 (1–3): 155–163. doi: 10.1080/03052159108941019
  • Mouhtamid, S. 2007. “Anwendung direkter Methoden zur industriellen Berechnung von Grenz-lasten mechanischer Komponenten.” PhD diss., Institute of General Mechanics, RWTH Aachen University, Germany.
  • Munoz, J. J., J. Bonet, A. Huerta, and J. Peraire. 2009. “Upper and lower bounds in limit analysis: Adaptive meshing strategies and discontinuous loading.” International Journal for Numerical Methods in Engineering 77 (4): 471–501. doi: 10.1002/nme.2421
  • Nguyen-Thoi, T., H. C. Vu-Do, T. Rabczuk, and H. Nguyen-Xuan. 2010. “A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes.” Computer Methods in Applied Mechanics and Engineering 199 (45–48): 3005–3027. doi: 10.1016/j.cma.2010.06.017
  • Pages, A., J. Gondzio, and N. Nabona. 2009. “Warmstarting for interior-point methods applied to the long-term power planning problem.” European Journal of Operational Research 197 (1): 112–125. doi: 10.1016/j.ejor.2008.05.022
  • Pastor, F., and E. Loute. 2005. “Solving limit analysis problems: An interior-point method.” Communications on Numerical Methods in Engineering 21 (11): 631–642. doi: 10.1002/cnm.779
  • Pastor, F., and E. Loute. 2010. “Limit analysis decomposition and finite element mixed method.” Journal of Computational and Applied Mathematics 234 (7): 2213–2221. doi: 10.1016/j.cam.2009.08.074
  • Pastor, F., E. Loute, J. Pastor, and M. Trillat. 2009. “Mixed method and convex optimization for limit analysis of homogeneous Gurson materials: A kinematic approach.” European Journal of Mechanics. A. Solids 28 (1): 25–35. doi: 10.1016/j.euromechsol.2008.02.008
  • Pastor, F., P. Thoré, E. Loute, J. Pastor, and M. Trillat. 2008. “Convex optimization and limit analysis: Application to Gurson and porous Drucker–Prager materials.” Engineering Fracture Mechanics 75 (6): 1367–1383. doi: 10.1016/j.engfracmech.2007.07.008
  • Polizzotto, C., and S. Rizzo. 1987. “Optimum design of reinforced concrete structures under variable loadings.” Engineering Optimization 11 (3–4): 327–338. doi: 10.1080/03052158708941055
  • Potra, F., and S. Wright. 2000. “Interior-point methods.” Journal of Computational and Applied Mathematics 124 (1–2): 281–302. doi: 10.1016/S0377-0427(00)00433-7
  • Saunders, M. 1996. “Cholesky-based methods for sparse least squares: The benefits of regularization.” In Linear and Nonlinear Conjugate Gradient-Related Methods, edited by L. Adams and J. Nazareth, 92–100. Philadelphia, PA: SIAM.
  • Saunders, M., and J. Tomlin. 1996. Solving Regularized Linear Programs Using Barrier Methods and KKT Systems. Technical Report SOL 96-4. Stanford, CA: Department of Operations Research, Stanford University.
  • Simon, J. W. 2012a. “Direct evaluation of the limit states of engineering structures exhibiting limited, nonlinear kinematical hardening.” International Journal of Plasticity 42: 141–167. doi: 10.1016/j.ijplas.2012.10.008
  • Simon, J. W. 2012b. “Numerische Einspieluntersuchungen mechanischer Komponenten mit begrenzt kinematisch verfestigendem Materialverhalten.” PhD diss., RWTH Aachen University, Germany.
  • Simon, J. W., M. Chen, and D. Weichert. 2012. “Shakedown analysis combined with the problem of heat conduction.” Journal of Pressure Vessel Technology 134 (2): 021206/1–8. doi: 10.1115/1.4004868
  • Simon, J. W., and D. Weichert. 2011. “Numerical lower bound shakedown analysis of engineering structures.” Computer Methods in Applied Mechanics and Engineering 200 (41–44): 2828–2839. doi: 10.1016/j.cma.2011.05.006
  • Simon, J. W., and D. Weichert. 2012a. “Interior-point method for lower bound shakedown analysis of von Mises-type materials.” Limit States of Materials and Structures – Direct Methods 2, 103–128. Dordrecht: Springer.
  • Simon, J. W., and D. Weichert. 2012b. “Shakedown analysis of engineering structures with limited kinematical hardening.” International Journal of Solids and Structures 49 (4): 2177–2186. doi: 10.1016/j.ijsolstr.2012.04.039
  • Simon, J. W., and D. Weichert. 2012. “Shakedown analysis with multidimensional loading spaces.” Computational Mechanics 49 (4): 477–485. doi: 10.1007/s00466-011-0656-8
  • Stojkovic, N., and P. Stanimirovic 2001. “Initial point in primal–dual interior point method.” Facta Universitatis – Mechanics, Automatic Control and Robotics 3 (11): 219–222.
  • Sturm, J. 1999. “Using SeDuMi 1.02. a MATLAB toolbox for optimization over symmetric cones.” Optimization Methods and Software 11–12, 625–653.
  • Tran, T., R. Kreiíig, Duc Khôi Vu, and Manfred Staat. 2008. “Upper bound limit and shakedown analysis of shells using the exact Ilyushin yield surface.” Computers & Structures 86 (17–18): 1683–1695. doi: 10.1016/j.compstruc.2008.02.005
  • Tran, T. N., G. R. Liu, H. Nguyen-Xuan, and T. Nguyen-Thoi. 2010. “An edge-based smoothed finite element method for primal–dual shakedown analysis of structures.” International Journal for Numerical Methods in Engineering 82 (7): 917–938.
  • Trillat, M., and J. Pastor. 2005. “Limit analysis and Gurson's model.” European Journal of Mechanics. A. Solids 24 (5): 800–819. doi: 10.1016/j.euromechsol.2005.06.003
  • Tütüncü, R., K. C. Toh, and M. Todd. 2003. “Solving semidefinite-quadratic-linear programs using SDPT3.” Mathematical Programming, Series B 95: 189–217. doi: 10.1007/s10107-002-0347-5
  • Vanderbei, R. 1995. “Symmetric quasidefinite matrices.” SIAM Journal on Optimization 5 (1): 100–113. doi: 10.1137/0805005
  • Vanderbei, R. 1999. “LOQO: An interior point code for quadratic programming.” Optimization Methods and Software 11–12 (1–4): 451–484. doi: 10.1080/10556789908805759
  • Vu, D. K., and Manfred Staat 2007. “Analysis of pressure equipment by application of the primal–dual theory of shakedown.” Communications on Numerical Methods in Engineering 23 (3): 213–225. doi: 10.1002/cnm.891
  • Vu, D. K., A. M. Yan, and H. Nguyen-Dang. 2004. “A dual form for discretized kinematic formulation in shakedown analysis.” International Journal of Solids and Structures 41, 267–277. doi: 10.1016/j.ijsolstr.2003.08.013
  • Vu, D. K., A. M. Yan, and H. Nguyen-Dang. 2004b. “A primal–dual algorithm for shakedown analysis of structures.” Computer Methods in Applied Mechanics and Engineering 193 (42–44): 4663–4674. doi: 10.1016/j.cma.2004.03.011
  • Wächter, A., and L. Biegler. 2005. “Line-search filter methods for nonlinear programming: Motivation and global convergence.” SIAM Journal on Optimization 16 (1): 1–31. doi: 10.1137/S1052623403426556
  • Wächter, A., and L. Biegler. 2006. “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming.” Mathematical Programming 106 (1): 25–57. doi: 10.1007/s10107-004-0559-y
  • Waltz, R. A., J. L. Morales, J. Nocedal, and D. Orban. 2006. “An interior algorithm for nonlinear optimization that combines line search and trust region steps.” Mathematical Programming 107 (3): 391–408. doi: 10.1007/s10107-004-0560-5
  • Wright, M., 2004. “The interior-point revolution in optimization: History, recent developments and lasting consequences.” Bulletin of the American Mathematical Society 42 (1): 39–56. doi: 10.1090/S0273-0979-04-01040-7
  • Yildirim, E., and S. Wright. 2002. “Warm-start strategies in interior-point methods for linear programming.” SIAM Journal on Optimization 12 (3): 782–810. doi: 10.1137/S1052623400369235
  • Zhang, G. 1992. “Einspielen und dessen numerische Behandlung von Flächentragwerken aus ideal plastischem bzw kinematisch verfestigendem Material.” PhD diss., Institut für Mechanik, Universität Hannover, Deutschland.
  • Zhang, T., and L. Raad. 2002. “An eigen-mode method in kinematic shakedown analysis.” International Journal of Plasticity 18 (1): 71–90. doi: 10.1016/S0749-6419(00)00055-3
  • Zouain, N., L. Borges, and J. Silveira. 2002. “An algorithm for shakedown analysis with nonlinear yield functions.” Computer Methods in Applied Mechanics and Engineering 191 (23–24): 2463–2481. doi: 10.1016/S0045-7825(01)00374-7
  • Zouain, N., J. Herskovits, L. A. Borges, and R. A. Feijoo. 1993. “An iterative algorithm for limit analysis with nonlinear yield functions.” International Journal of Solids and Structures 30 (10): 1397–1417. doi: 10.1016/0020-7683(93)90220-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.