266
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Optimum design of truss structures with frequency constraints by an enhanced particle swarm optimization method with gradient directions based on emigration philosophy

, ORCID Icon & ORCID Icon
Pages 434-456 | Received 26 Jun 2021, Accepted 12 Nov 2021, Published online: 19 Dec 2021

References

  • Awad, N. H., M. Z. Ali, P. N. Suganthan, J. J. Liang, and B. Y. Qu. 2017. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. Nanyang Technological University, Singapore.
  • Bellagamba, L., and T. Y. Yang. 1981. “Minimum-Mass Truss Structures with Constraints on Fundamental Natural Frequency.” AIAA Journal 19 (11): 1452–1458. doi:10.2514/3.7875.
  • Bigham, A., and S. Gholizadeh. 2020. “Topology Optimization of Nonlinear Single-Layer Domes by an Improved Electro-Search Algorithm and Its Performance Analysis Using Statistical Tests.” Structural and Multidisciplinary Optimization 62 (4): 1821–1848. doi:10.1007/s00158-020-02578-4.
  • Canfield, R. A. 1990. “High-Quality Approximation of Eigenvalues in Structural Optimization.” AIAA Journal 28 (6): 1116–1122. doi:10.2514/3.25175.
  • Dehghani, M., M. Mashayekhi, and E. Salajegheh. 2016. “Topology Optimization of Double- and Triple-Layer Grids Using a Hybrid Methodology.” Engineering Optimization 48 (8): 1333–1349. doi:10.1080/0305215X.2015.1105968.
  • Gholizadeh, S., M. Danesh, and C. Gheyratmand. 2020. “A New Newton Metaheuristic Algorithm for Discrete Performance-Based Design Optimization of Steel Moment Frames.” Computers & Structures 234: 106250. doi:10.1016/j.compstruc.2020.106250.
  • Gholizadeh, S., and A. Milany. 2018. “An Improved Fireworks Algorithm for Discrete Sizing Optimization of Steel Skeletal Structures.” Engineering Optimization 50 (11): 1829–1849. http://www.tandfonline.com/loi/geno20.
  • Gholizadeh, S., E. Salajegheh, and P. Torkzadeh. 2008. “Structural Optimization with Frequency Constraints by Genetic Algorithm Using Wavelet Radial Basis Function Neural Network.” Journal of Sound and Vibration 312 (1-2): 316–331. doi:10.1016/j.jsv.2007.10.050.
  • Gomes, H. M. 2011. “Truss Optimization with Dynamic Constraints Using a Particle Swarm Algorithm.” Expert Systems with Applications 38 (1): 957–968. doi:10.1016/j.eswa.2010.07.086.
  • Grandhi, R. 1993. “Structural Optimization with Frequency Constraints—A Review.” AIAA Journal 31 (12): 2296–2303. doi:10.2514/3.11928.
  • Grandhi, R. V., and V. B. Venkayya. 1988. “Structural Optimization with Frequency Constraints.” AIAA Journal 26 (7): 858–866. doi:10.2514/3.9979.
  • Ho-Huu, V., T. Nguyen-Thoi, T. Truong-Khac, L. Le-Anh, and T. Vo-Duy. 2018. “An Improved Differential Evolution Based on Roulette Wheel Selection for Shape and Size Optimization of Truss Structures with Frequency Constraints.” Neural Computing and Applications 29 (1): 167–185. doi:10.1007/s00521-016-2426-1.
  • Kalita, K., P. Dey, S. Haldar, and X. Z. Gao. 2020. “Optimizing Frequencies of Skew Composite Laminates with Metaheuristic Algorithms.” Engineering with Computers 36 (2): 741–761. doi:10.1007/s00366-019-00728-x.
  • Katariya, P. V., and S. K. Panda. 2019. “Numerical Evaluation of Transient Deflection and Frequency Responses of Sandwich Shell Structure Using Higher Order Theory and Different Mechanical Loadings.” Engineering with Computers 35 (3): 1009–1026. doi:10.1007/s00366-018-0646-y.
  • Kaveh, A., and M. Ilchi Ghazaan. 2018. “A New Hybrid Meta-heuristic Algorithm for Optimal Design of Large-Scale Dome Structures.” Engineering Optimization 50 (2): 235–252. doi:10.1080/0305215X.2017.1313250.
  • Kaveh, A., and A. Zolghadr. 2012. “Truss Optimization with Natural Frequency Constraints Using a Hybridized CSS-BBBC Algorithm with Trap Recognition Capability.” Computers & Structures 102-103: 14–27. doi:10.1016/j.compstruc.2012.03.016.
  • Kennedy, J., and R. Eberhart. 1995. “Particle Swarm Optimization.” Proceedings of ICNN'95-International Conference on Neural Networks 4: 1942–1948. doi:10.1109/ICNN.1995.488968.
  • Khatibinia, M., and S. S. Naseralavi. 2014. “Truss Optimization on Shape and Sizing with Frequency Constraints Based on Orthogonal Multi-Gravitational Search Algorithm.” Journal of Sound and Vibration 333 (24): 6349–6369. doi:10.1016/j.jsv.2014.07.027.
  • Konzelman, C. J. 1986. “Dual Methods and Approximation Concepts for Structural Optimization.” MSc Thesis, Department of Mechanical Engineering, University of Toronto.
  • Lieu, Q. X., D. T. Do, and J. Lee. 2018. “An Adaptive Hybrid Evolutionary Firefly Algorithm for Shape and Size Optimization of Truss Structures with Frequency Constraints.” Computers & Structures 195: 99–112. doi:10.1016/j.compstruc.2017.06.016.
  • Lin, J. H., W. Y. Che, and Y. S. Yu. 1982. “Structural Optimization on Geometrical Configuration and Element Sizing with Statical and Dynamical Constraints.” Computers & Structures 15 (5): 507–515. doi:10.1016/0045-7949(82)90002-5.
  • Lingyun, W., Z. Mei, W. Guangming, and M. Guang. 2005. “Truss Optimization on Shape and Sizing with Frequency Constraints Based on Genetic Algorithm.” Computational Mechanics 35 (5): 361–368. doi:10.1007/s00466-004-0623-8.
  • Liu, S., H. Zhu, Z. Chen, and H. Cao. 2020. “Frequency-Constrained Truss Optimization Using the Fruit Fly Optimization Algorithm with an Adaptive Vision Search Strategy.” Engineering Optimization 52 (5): 777–797. doi:10.1080/0305215X.2019.1624738.
  • Lynn, N., and P. N. Suganthan. 2017. “Ensemble Particle Swarm Optimizer.” Applied Soft Computing 55: 533–548. doi:10.1016/j.asoc.2017.02.007.
  • Miguel, L. F. F., and L. F. F. Miguel. 2012. “Shape and Size Optimization of Truss Structures Considering Dynamic Constraints Through Modern Metaheuristic Algorithms.” Expert Systems with Applications 39 (10): 9458–9467. doi:10.1016/j.eswa.2012.02.113.
  • Mortazavi, A. 2020. “A New Fuzzy Strategy for Size and Topology Optimization of Truss Structures.” Applied Soft Computing 93: 106412. doi:10.1016/j.asoc.2020.106412.
  • Mortazavi, A. 2021. “Size and Layout Optimization of Truss Structures with Dynamic Constraints Using the Interactive Fuzzy Search Algorithm.” Engineering Optimization 53 (3): 369–391. doi:10.1080/0305215X.2020.1726341.
  • Mortazavi, A., and M. Moloodpoor. 2021. “Enhanced Butterfly Optimization Algorithm with a New Fuzzy Regulator Strategy and Virtual Butterfly Concept.” Knowledge-Based Systems 228: 107291. doi:10.1016/j.knosys.2021.107291.
  • Mortazavi, A., V. Toğan, and A. Nuhoğlu. 2018. “Comparison of Two Metaheuristic Algorithms on Sizing and Topology Optimization of Trusses and Mathematical Functions.” Gazi University Journal of Science 31 (2): 416–435. https://dergipark.org.tr/en/pub/gujs/issue/37206/281453.
  • Salajegheh, E. 1997. “Optimum Design of Plate Structures with Frequency Constraints.” Engineering Computations 14 (8): 869–882. doi:10.1108/02644409710192245.
  • Salajegheh, E. 2000a. “Optimum Design of Steel Space Frames with Frequency Constraints Using Three Point Rayleigh Quotient Approximation.” Journal of Constructional Steel Research 54 (2): 305–313. doi:10.1016/S0143-974X(99)00060-7.
  • Salajegheh, E. 2000b. “Optimum Design of Structures with High-Quality Approximation of Frequency Constraints.” Advances in Engineering Software 31 (6): 381–384. doi:10.1016/S0965-9978(00)00002-8.
  • Salajegheh, E., S. Gholizadeh, and P. Torkzadeh. 2007. “Optimal Desigin of Structures with Frequency Constraints Using Wavelet Back Propagation Neural.” Asian Journal of Civil Engineering (Building and Housing) 8 (1): 97–111. https://www.sid.ir/en/journal/ViewPaper.aspx?id=85238.
  • Salajegheh, F., and E. Salajegheh. 2019. “PSOG: Enhanced Particle Swarm Optimization by a Unit Vector of First and Second Order Gradient Directions.” Swarm and Evolutionary Computation 46: 28–51. doi:10.1016/j.swevo.2019.01.010.
  • Salajegheh, E., and G. N. Vanderplaats. 1987. “An Efficient Approximation Method for Structural Synthesis with Reference to Space Structures.” International Journal of Space Structures 2 (3): 165–175. doi:10.1177/%2F026635118700200305.
  • Savsani, V. J., G. G. Tejani, and V. K. Patel. 2016. “Truss Topology Optimization with Static and Dynamic Constraints Using Modified Subpopulation Teaching–Learning-Based Optimization.” Engineering Optimization 48 (11): 1990–2006. doi:10.1080/0305215X.2016.1150468.
  • Sedaghati, R., A. Suleman, and B. Tabarrok. 2002. “Structural Optimization with Frequency Constraints Using the Finite Element Force Method.” AIAA Journal 40 (2): 382–388. doi:10.2514/2.1657.
  • Sengupta, S., S. Basak, and R. A. Peters. 2019. “Particle Swarm Optimization: A Survey of Historical and Recent Developments with Hybridization Perspectives.” Machine Learning and Knowledge Extraction 1 (1): 157–191. doi:10.3390/make1010010.
  • Seyedpoor, S. M., J. Salajegheh, E. Salajegheh, and S. Gholizadeh. 2009. “Optimum Shape Design of Arch Dams for Earthquake Loading Using a Fuzzy Inference System and Wavelet Neural Networks.” Engineering Optimization 41 (5): 473–493. doi:10.1080/03052150802596076.
  • Tejani, G. G., V. J. Savsani, S. Bureerat, V. K. Patel, and P. Savsani. 2019. “Topology Optimization of Truss Subjected to Static and Dynamic Constraints by Integrating Simulated Annealing into Passing Vehicle Search Algorithms.” Engineering with Computers 35 (2): 499–517. doi:10.1007/s00366-018-0612-8.
  • Tejani, G. G., V. J. Savsani, and V. K. Patel. 2016. “Adaptive Symbiotic Organisms Search (SOS) Algorithm for Structural Design Optimization.” Journal of Computational Design and Engineering 3 (3): 226–249. doi:10.1016/j.jcde.2016.02.003.
  • Tejani, G. G., V. J. Savsani, V. K. Patel, and S. Mirjalili. 2018. “Truss Optimization with Natural Frequency Bounds Using Improved Symbiotic Organisms Search.” Knowledge-Based Systems 143: 162–178. doi:10.1016/j.knosys.2017.12.012.
  • Tejani, G. G., V. J. Savsani, V. K. Patel, and P. V. Savsani. 2018. “Size, Shape, and Topology Optimization of Planar and Space Trusses Using Mutation-Based Improved Metaheuristics.” Journal of Computational Design and Engineering 5 (2): 198–214. doi:10.1016/j.jcde.2017.10.001.
  • Vanderplaats, G. N., and E. Salajegheh. 1988. “An Efficient Approximation Technique for Frequency Constraints in Frame Optimization.” International Journal for Numerical Methods in Engineering 26 (5): 1057–1069. doi:10.1002/nme.1620260505.
  • Wamsler, M. 2009. “The Role of Actual Modal-Contributions Versus Frequency to Optimize the Structure.” Engineering with Computers 25 (2): 131–138. doi:10.1007/s00366-008-0100-7.
  • Wang, D., W. H. Zhang, and J. S. Jiang. 2004. “Truss Optimization on Shape and Sizing with Frequency Constraints.” AIAA Journal 42 (3): 622–630. doi:10.2514/1.1711.
  • Wei, L., T. Tang, X. Xie, and W. Shen. 2011. “Truss Optimization on Shape and Sizing with Frequency Constraints Based on Parallel Genetic Algorithm.” Structural and Multidisciplinary Optimization 43 (5): 665–682. doi:10.1007/s00158-010-0600-0.
  • Wolpert, D. H., and W. G. Macready. 1997. “No Free Lunch Theorems for Optimization.” IEEE Transactions on Evolutionary Computation 1 (1): 67–82. doi:10.1109/4235.585893.
  • Yang, Z., Y. Bai, and X. Chen. 2017. “Simultaneous Optimal Design of Topology and Size for a Flexure-Hinge-Based Guiding Mechanism to Minimize Mass Under Stiffness and Frequency Constraints.” Engineering Optimization 49 (6): 948–961. doi:10.1080/0305215X.2016.1233002.
  • Zuo, W., J. Bai, and B. Li. 2014. “A Hybrid OC–GA Approach for Fast and Global Truss Optimization with Frequency Constraints.” Applied Soft Computing 14: 528–535. doi:10.1016/j.asoc.2013.09.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.