223
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Modelling a bi-level multi-objective post-disaster humanitarian relief logistics network design problem under uncertainty

, ORCID Icon & ORCID Icon
Received 01 Dec 2022, Accepted 04 Jul 2023, Published online: 01 Aug 2023

References

  • Abounacer, R., M. Rekik, and J. Renaud. 2014. “An Exact Solution Approach for Multi-Objective Location-Transportation Problem for Disaster Response.” Computers & Operations Research 41:83–93. https://doi.org/10.1016/j.cor.2013.08.001.
  • Akbari, N., D. Jones, and F. Arabikhan. 2021. “Goal Programming Models with Interval Coefficients for the Sustainable Selection of Marine Renewable Energy Projects in the UK.” European Journal of Operational Research 293 (2): 748–760. https://doi.org/10.1016/j.ejor.2020.12.038.
  • Akbarpour, M., S. A. Torabi, and A. Ghavamifar. 2020. “Designing An Integrated Pharmaceutical Relief Chain Network Under Demand Uncertainty.” Transportation Research Part E: Logistics and Transportation Review 136:101867. https://doi.org/10.1016/j.tre.2020.101867.
  • Bai, X., J. Gao, and Y. Liu. 2018. “Prepositioning Emergency Supplies Under Uncertainty: A Parametric Optimization Method.” Engineering Optimization 50 (7): 1114–1133. https://doi.org/10.1080/0305215X.2017.1328508.
  • Bakhtavar, E., T. Prabatha, H. Karunathilake, R. Sadiq, and K. Hewage. 2020. “Assessment of Renewable Energy-Based Strategies for Net-Zero Energy Communities: A Planning Model Using Multi-Objective Goal Programming.” Journal of Cleaner Production 272:122886. https://doi.org/10.1016/j.jclepro.2020.122886.
  • Ben-Tal, A., L. El Ghaoui, and A. Nemirovski. 2009. Robust Optimization, Vol. 28 of the Princeton Series in Applied Mathematics. Princeton, NJ: Princeton University Press.
  • Bertsimas, D., and M. Sim. 2004. “The Price of Robustness.” Operations Research 52 (1): 35–53. https://doi.org/10.1287/opre.1030.0065.
  • Camacho-Vallejo, J. F., E. González-Rodríguez, F. J. Almaguer, and R. G. González-Ramírez. 2015. “A Bi-Level Optimization Model for Aid Distribution After the Occurrence of a Disaster.” Journal of Cleaner Production 105:134–145. https://doi.org/10.1016/j.jclepro.2014.09.069.
  • Cao, C., Y. Liu, O. Tang, and X. Gao. 2021. “A Fuzzy Bi-Level Optimization Model for Multi-Period Post-Disaster Relief Distribution in Sustainable Humanitarian Supply Chains.” International Journal of Production Economics 235:108081. https://doi.org/10.1016/j.ijpe.2021.108081.
  • Chang, Y., Y. Song, and B. Eksioglu. 2021. “A Stochastic Look-Ahead Approach for Hurricane Relief Logistics Operations Planning Under Uncertainty.” Annals of Operations Research 319:1231–1263. https://doi.org/10.1007/s10479-021-04025-z.
  • Chen, K., C. S. Pun, and H. Y. Wong. 2023. “Efficient Social Distancing During the COVID-19 Pandemic: Integrating Economic and Public Health Considerations.” European Journal of Operational Research304 (1): 84–98. https://doi.org/10.1016/j.ejor.2021.11.012.
  • Chen, Y. X., P. R. Tadikamalla, J. Shang, and Y. Song. 2020. “Supply Allocation: Bi-Level Programming and Differential Evolution Algorithm for Natural Disaster Relief.” Cluster Computing 23 (1): 203–217. https://doi.org/10.1007/s10586-017-1366-6.
  • Dubey, R., and A. Gunasekaran. 2016. “The Sustainable Humanitarian Supply Chain Design: Agility, Adaptability and Alignment.” International Journal of Logistics Research and Applications 19 (1): 62–82. https://doi.org/10.1080/13675567.2015.1015511.
  • Dufour, É., G. Laporte, J. Paquette, and M. È. Rancourt. 2018. “Logistics Service Network Design for Humanitarian Response in East Africa.” Omega 74:1–14. https://doi.org/10.1016/j.omega.2017.01.002.
  • Eftekhar, M., J. S. Jeannette Song, and S. Webster. 2022. “Prepositioning and Local Purchasing for Emergency Operations Under Budget, Demand, and Supply Uncertainty.” Manufacturing & Service Operations Management 24 (1): 315–332. https://doi.org/10.1287/msom.2020.0956.
  • Fahimnia, B., A. Jabbarzadeh, A. Ghavamifar, and M. Bell. 2017. “Supply Chain Design for Efficient and Effective Blood Supply in Disasters.” International Journal of Production Economics 183:700–709. https://doi.org/10.1016/j.ijpe.2015.11.007.
  • Fortuny-Amat, J., and B. A. McCarl. 1981. “A Representation and Economic Interpretation of a Two-Level Programming Problem.” Journal of the Operational Research Society 32 (9): 783–792. https://doi.org/10.1057/jors.1981.156.
  • Gharib, M., S. M. T. Fatemi Ghomi, and F. Jolai. 2021. “A Dynamic Dispatching Problem to Allocate Relief Vehicles After a Disaster.” Engineering Optimization 53 (11): 1999–2016. https://doi.org/10.1080/0305215X.2020.1843164.
  • Ghasemi, P., K. Khalili-Damghani, A. Hafezalkotob, and S. Raissi. 2019. “Uncertain Multi-Objective Multi-Commodity Multi-Period Multi-Vehicle Location-Allocation Model for Earthquake Evacuation Planning.” Applied Mathematics and Computation 350:105–132. https://doi.org/10.1016/j.amc.2018.12.061.
  • Ghosh, S., K. H. Küfer, S. K. Roy, and G. W. Weber. 2022. “Carbon Mechanism on Sustainable Multi-Objective Solid Transportation Problem for Waste Management in Pythagorean Hesitant Fuzzy Environment.” Complex & Intelligent Systems 8 (5): 4115–4143. https://doi.org/10.1007/s40747-022-00686-w.
  • Giri, B. K., and S. K. Roy. 2022. “Neutrosophic Multi-Objective Green Four-Dimensional Fixed-Charge Transportation Problem.” International Journal of Machine Learning and Cybernetics 13 (10): 3089–3112. https://doi.org/10.1007/s13042-022-01582-y.
  • Gralla, E., J. Goentzel, and C. Fine. 2014. “Assessing Trade-Offs Among Multiple Objectives for Humanitarian Aid Delivery Using Expert Preferences.” Production and Operations Management 23 (6): 978–989. https://doi.org/10.1111/poms.12110.
  • Gutjahr, W. J., and N. Dzubur. 2016. “Bi-Objective Bilevel Optimization of Distribution Center Locations Considering User Equilibria.” Transportation Research Part E: Logistics and Transportation Review85:1–22. https://doi.org/10.1016/j.tre.2015.11.001.
  • Haeri, A., S. M. Hosseini-Motlagh, M. R. G. Samani, and M. Rezaei. 2020. “A Bi-Level Programming Approach for Improving Relief Logistics Operations: A Real Case in Kermanshah Earthquake.” Computers & Industrial Engineering 145:106532. https://doi.org/10.1016/j.cie.2020.106532.
  • Heydari Mofrad, H., and J. Yazdi. 2022. “An Enhanced Multi-Objective Evolutionary Algorithm for the Rehabilitation of Urban Drainage Systems.” Engineering Optimization 54 (2): 349–367. https://doi.org/10.1080/0305215X.2021.1872555.
  • Hosseini-Motlagh, S. M., M. R. G. Samani, and P. Farokhnejad. 2021. “Designing a Testing Kit Supply Network for Suspected COVID-19 Cases Under Mixed Uncertainty Approach.” Applied Soft Computing111:107696. https://doi.org/10.1016/j.asoc.2021.107696.
  • Hosseini-Motlagh, S. M., M. R. G. Samani, and S. Homaei. 2020. “Toward a Coordination of Inventory and Distribution Schedules for Blood in Disasters.” Socio-Economic Planning Sciences 72:100897. https://doi.org/10.1016/j.seps.2020.100897.
  • Hosseini-Motlagh, S. M., M. R. G. Samani, and S. Homaei. 2023. “Design of Control Strategies to Help Prevent the Spread of COVID-19 Pandemic.” European Journal of Operational Research 304 (1): 219–238. https://doi.org/10.1016/j.ejor.2021.11.016.
  • Kaur, H., and S. P. Singh. 2022. “Disaster Resilient Proactive and Reactive Procurement Models for Humanitarian Supply Chain.” Production Planning & Control 33 (6-7): 576–589. https://doi.org/10.1080/09537287.2020.1834124.
  • Khodaee, V., V. Kayvanfar, and A. Haji. 2022. “A Humanitarian Cold Supply Chain Distribution Model with Equity Consideration: The Case of COVID-19 Vaccine Distribution in the European Union.” Decision Analytics Journal 4:100126. https://doi.org/10.1016/j.dajour.2022.100126.
  • Li, Y., G. Yu, and J. Zhang. 2021. “A Three-Stage Stochastic Model for Emergency Relief Planning Considering Secondary Disasters.” Engineering Optimization 53 (4): 551–575. https://doi.org/10.1080/0305215X.2020.1740920.
  • Ma, Q., W. Wang, Y. Peng, and X. Song. 2018. “A Two-Stage Stochastic Optimization Model for Port Cold Storage Capacity Allocation Considering Pelagic Fishery Yield Uncertainties.” Engineering Optimization 50 (11): 1926–1940. https://doi.org/10.1080/0305215X.2017.1418338.
  • Majumder, R., and D. Ghose. 2022. “Three-Player Game-Theoretic Allocation of Indivisible Resources During Natural Disasters.” Engineering Optimization20pp. Advance online publication. https://doi.org/10.1080/0305215X.2022.2101047.
  • Mondal, A., and S. K. Roy. 2021. “Multi-Objective Sustainable Opened-End Closed-Loop Supply Chain Under Mixed Uncertainty During COVID-19 Pandemic Situation.” Computers & Industrial Engineering159:107453. https://doi.org/10.1016/j.cie.2021.107453.
  • Mondal, A., and S. K. Roy. 2022. “Application of Choquet Integral in Interval Type-2 Pythagorean Fuzzy Sustainable Supply Chain Management Under Risk.” International Journal of Intelligent Systems 37 (1): 217–263. https://doi.org/10.1002/int.22623.
  • Mondal, A., S. K. Roy, and S. Midya. 2023. “Intuitionistic Fuzzy Sustainable Multi-Objective Multi-Item Multi-Choice Step Fixed-Charge Solid Transportation Problem.” Journal of Ambient Intelligence and Humanized Computing 14 (6): 6975–6999. https://doi.org/10.1007/s12652-021-03554-6.
  • Ni, W., J. Shu, and M. Song. 2018. “Location and Emergency Inventory Pre-Positioning for Disaster Response Operations: Min–max Robust Model and a Case Study of Yushu Earthquake.” Production and Operations Management 27 (1): 160–183. https://doi.org/10.1111/poms.12789.
  • Ransikarbum, K., and S. J. Mason. 2016. “Multiple-Objective Analysis of Integrated Relief Supply and Network Restoration in Humanitarian Logistics Operations.” International Journal of Production Research 54 (1): 49–68. https://doi.org/10.1080/00207543.2014.977458.
  • Rawls, C. G., and M. A. Turnquist. 2010. “Pre-Positioning of Emergency Supplies for Disaster Response.” Transportation Research Part B: Methodological 44 (4): 521–534. https://doi.org/10.1016/j.trb.2009.08.003.
  • Rennemo, S. J., K. F. Rø, L. M. Hvattum, and G. Tirado. 2014. “A Three-Stage Stochastic Facility Routing Model for Disaster Response Planning.” Transportation Research Part E: Logistics and Transportation Review 62:116–135. https://doi.org/10.1016/j.tre.2013.12.006.
  • Safaei, A. S., S. Farsad, and M. M. Paydar. 2018. “Robust Bi-Level Optimization of Relief Logistics Operations.” Applied Mathematical Modelling 56:359–380. https://doi.org/10.1016/j.apm.2017.12.003.
  • Sakiani, R., A. Seifi, and R. R. Khorshiddoust. 2020. “Inventory Routing and Dynamic Redistribution of Relief Goods in Post-Disaster Operations.” Computers & Industrial Engineering 140:106219. https://doi.org/10.1016/j.cie.2019.106219.
  • Samani, M. R. G., and S. M. Hosseini-Motlagh. 2021a. “A Novel Capacity Sharing Mechanism to Collaborative Activities in the Blood Collection Process During the COVID-19 Outbreak.” Applied Soft Computing 112:107821. https://doi.org/10.1016/j.asoc.2021.107821.
  • Samani, M. R. G., and S. M. Hosseini-Motlagh. 2021b. “A Robust Framework for Designing Blood Network in Disaster Relief: A Real-Life Case.” Operational Research 21 (3): 1529–1568. https://doi.org/10.1007/s12351-020-00588-0.
  • Samani, M. R. G., S. A. Torabi, and S. M. Hosseini-Motlagh. 2018. “Integrated Blood Supply Chain Planning for Disaster Relief.” International Journal of Disaster Risk Reduction 27:168–188. https://doi.org/10.1016/j.ijdrr.2017.10.005.
  • Shaw, L., S. K. Das, and S. K. Roy. 2022. “Location-Allocation Problem for Resource Distribution Under Uncertainty in Disaster Relief Operations.” Socio-Economic Planning Sciences 82:101232. https://doi.org/10.1016/j.seps.2022.101232.
  • Shen, Z. J. M., R. L. Zhan, and J. Zhang. 2011. “The Reliable Facility Location Problem: Formulations, Heuristics, and Approximation Algorithms.” INFORMS Journal on Computing 23 (3): 470–482. https://doi.org/10.1287/ijoc.1100.0414.
  • Shokr, I., F. Jolai, and A. Bozorgi-Amiri. 2021. “A Novel Humanitarian and Private Sector Relief Chain Network Design Model for Disaster Response.” International Journal of Disaster Risk Reduction65:102522. https://doi.org/10.1016/j.ijdrr.2021.102522.
  • Shu, J., M. Song, B. Wang, J. Yang, and S. Zhu. 2023. “Humanitarian Relief Network Design: Responsiveness Maximization and a Case Study of Typhoon Rammasun.” IISE Transactions 55 (3): 301–313. https://doi.org/10.1080/24725854.2022.2074577.
  • Sun, H., Y. Wang, and Y. Xue. 2021. “A Bi-Objective Robust Optimization Model for Disaster Response Planning Under Uncertainties.” Computers & Industrial Engineering 155:107213. https://doi.org/10.1016/j.cie.2021.107213.
  • Wang, J., J. Cai, X. Yue, and N. C. Suresh. 2021. “Pre-Positioning and Real-Time Disaster Response Operations: Optimization with Mobile Phone Location Data.” Transportation Research Part E: Logistics and Transportation Review 150:102344. https://doi.org/10.1016/j.tre.2021.102344.
  • Wang, B., W. Deng, Z. Tan, B. Zhang, and F. Chen. 2022. “A Two-Stage Stochastic Optimization for Disaster Rescue Resource Distribution Considering Multiple Disasters.” Engineering Optimization17pp. Advance online publication. https://doi.org/10.1080/0305215X.2022.2144277.
  • Wei, X., H. Qiu, D. Wang, J. Duan, Y. Wang, and T. C. E. Cheng. 2020. “An Integrated Location-Routing Problem with Post-Disaster Relief Distribution.” Computers & Industrial Engineering 147:106632. https://doi.org/10.1016/j.cie.2020.106632.
  • Xiong, J., S. Wang, and T. S. Ng. 2021. “Robust Bilevel Resource Recovery Planning.” Production and Operations Management 30 (9): 2962–2992. https://doi.org/10.1111/poms.13413.
  • Yáñez-Sandivari, L., C. E. Cortés, and P. A. Rey. 2021. “Humanitarian Logistics and Emergencies Management: New Perspectives to a Sociotechnical Problem and Its Optimization Approach Management.” International Journal of Disaster Risk Reduction 52:101952. https://doi.org/10.1016/j.ijdrr.2020.101952.
  • Ye, Y., W. Jiao, and H. Yan. 2020. “Managing Relief Inventories Responding to Natural Disasters: Gaps Between Practice and Literature.” Production and Operations Management 29 (4): 807–832. https://doi.org/10.1111/poms.13136.
  • Yin, X., İ. E. Büyüktahtakın, and B. P. Patel. 2023. “Covid-19: Data-Driven Optimal Allocation of Ventilator Supply Under Uncertainty and Risk.” European Journal of Operational Research 304 (1): 255–275. https://doi.org/10.1016/j.ejor.2021.11.052.
  • Zhang, P., Y. Liu, G. Yang, and G. Zhang. 2020. “A Distributionally Robust Optimization Model for Designing Humanitarian Relief Network with Resource Reallocation.” Soft Computing 24 (4): 2749–2767. https://doi.org/10.1007/s00500-019-04362-z.
  • Zhang, P., Y. Liu, G. Yang, and G. Zhang. 2022. “A Multi-Objective Distributionally Robust Model for Sustainable Last Mile Relief Network Design Problem.” Annals of Operations Research 309 (2): 689–730. https://doi.org/10.1007/s10479-020-03813-3.
  • Zhang, J., Y. Liu, G. Yu, and Z. J. Shen. 2021. “Robustifying Humanitarian Relief Systems Against Travel Time Uncertainty.” Naval Research Logistics 68 (7): 871–885. https://doi.org/10.1002/nav.21981.
  • Zheng, Y. J., and H. F. Ling. 2013. “Emergency Transportation Planning in Disaster Relief Supply Chain Management: A Cooperative Fuzzy Optimization Approach.” Soft Computing 17 (7): 1301–1314. https://doi.org/10.1007/s00500-012-0968-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.