1,569
Views
23
CrossRef citations to date
0
Altmetric
Articles

Intuition and insight: two concepts that illuminate the tacit in science education

References

  • Akinci, C., & Sadler-Smith, E. (2013). Assessing individual differences in experiential (intuitive) and rational (analytical) cognitive styles. International Journal of Selection and Assessment, 21, 211–221.10.1111/ijsa.2013.21.issue-2
  • Allinson, C. W., & Hayes, J. (1996). The cognitive style index: A measure of intuition-analysis for organizational research. Journal of Management Studies, 33, 119–135.10.1111/joms.1996.33.issue-1
  • Andersson, B. (1986). The experiential gestalt of causation: A common core to pupils’ preconceptions in science. European Journal of Science Education, 8, 155–171.10.1080/0140528860080205
  • Atkinson, T., & Claxton, G. (Eds.). (2000). The intuitive practitioner: On the value of not always knowing what one is doing. Buckingham: Open University Press.
  • Ausubel, D. (2000). The acquisition and retention of knowledge: A cognitive view. Dordrecht: Kluwer Academic.10.1007/978-94-015-9454-7
  • Baldwin, R. (1997). Merging a deep intuitive ecological understanding with conservation biology: An AEI approach. The Trumpeter, 14(2). Retrieved February 6, 2015, from http://trumpeter.athabascau.ca/index.php/trumpet/article/view/199/266
  • Bastick, T. (1982). Intuition: How we think and act. Chichester: Wiley.
  • Baylor, A. L. (2001). A U-shaped model for the development of intuition by level of expertise. New Ideas in Psychology, 19, 237–244.10.1016/S0732-118X(01)00005-8
  • Berry, D. C., & Broadbent, D. E. (1988). Interactive tasks and the implicit-explicit distinction. British Journal of Psychology, 79, 251–272.10.1111/bjop.1988.79.issue-2
  • Berry, J., Johnson, P., Maull, W., & Monaghan, J. (1999). Routine questions and examination performance. In O. Zaslavsky (Ed.), Proceedings of the 23rd conference of the International Group for the Psychology of Mathematics Education (PME23) (pp. 105–112). Haifa, Israel: Technion. Retrieved February 6, 2015, from http://eric.ed.gov/?id=ED436403
  • Bing, T. J., & Redish, E. F. (2009). Analyzing problem solving using math in physics: Epistemological framing via warrants. Physical Review Special Topics-Physics Education Research, 5, 020108.10.1103/PhysRevSTPER.5.020108
  • Black, J. B. (2010). An embodied/grounded cognition perspective on educational technology. In M. S. Khine & I. Saleh (Eds.), New science of learning: Cognition, computers and collaboration in education (pp. 45–52). New York, NY: Springer.10.1007/978-1-4419-5716-0
  • Bolte, A., & Goschke, T. (2005). On the speed of intuition: Intuitive judgments of semantic coherence under different response deadlines. Memory & Cognition, 33, 1248–1255.
  • Bowden, E. M., Jungbeeman, M., Fleck, J., & Kounios, J. (2005). New approaches to demystifying insight. Trends in Cognitive Sciences, 9, 322–328.10.1016/j.tics.2005.05.012
  • Bransford, J., Brown, A. L., & Cocking, R. (Eds.). (2000). How people learn: Brain, mind, experience, and school. Washington, DC: National Academies Press.
  • Brock, R. (2006). Intuition and integration: Insights from intuitive students ( Unpublished M.Phil. thesis). University of Cambridge, Cambridge. Retrieved February 6, 2015, from http://people.ds.cam.ac.uk/kst24/researchstudents/brock%202006 %20mphil%20intuition%20&%20integration.pdf
  • Bruner, J. S. (1977). The process of education. Cambridge, MA: Harvard University Press.
  • Campanario, J. M. (1998). Using counterintuitive problems in teaching physics. The Physics Teacher, 36, 439–441.10.1119/1.879917
  • Caravita, S., & Halldén, O. (1994). Re-framing the problem of conceptual change. Learning and Instruction, 4, 89–111.10.1016/0959-4752(94)90020-5
  • Catlow, R. (2013). Inorganic materials: Intuition weaved into computation. Nature Chemistry, 5, 648–649.10.1038/nchem.1712
  • Chabris, C., & Simons, D. (2011). The invisible gorilla: And other ways our intuitions deceive us. New York, NY: Broadway Books.
  • Champagne, A. B., Gunstone, R. F., & Klopfer, L. E. (1985). Instructional consequences of students’ knowledge about physical phenomena. In L. H. T. West & A. L. Pines (Eds.), Cognitive structure and conceptual change (pp. 61–68). New York, NY: Academic Press.
  • Chi, M. T. H. (1997). Creativity: Shifting across ontological categories flexibly. In T. Ward & S. M. Smith (Eds.), Creative thought: An investigation of conceptual structures and processes (pp. 209–234). Washington, DC: American Psychological Association.10.1037/10227-000
  • Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.10.1207/s15516709cog0502_2
  • Chi, M. T., & Slotta, J. D. (1993). The ontological coherence of intuitive physics. Cognition and Instruction, 10, 249–260.10.1080/07370008.1985.9649011
  • Chin, C., & Brown, D. E. (2000). Learning deeply in science: An analysis and reintegration of deep approaches in two case studies of grade 8 students. Research in Science Education, 30, 173–197.10.1007/BF02461627
  • Chow, T. L. (2008). Gravity, black holes, and the very early universe. New York, NY: Springer.10.1007/978-0-387-73631-0
  • Chronicle, E. P., MacGregor, J. N., & Ormerod, T. C. (2004). What makes an insight problem? The roles of heuristics, goal conception, and solution recoding in knowledge-lean problems. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 14–27.
  • Chu, Y., & MacGregor, J. N. (2011). Human performance on insight problem solving: A review. The Journal of Problem Solving, 3, 119–150.
  • Claxton, G. (1993). Minitheories: A preliminary model for learning science. In P. J. Black & A. M. Lucas (Eds.), Children’s informal ideas in science (pp. 45–61). London: Routledge.
  • Claxton, G. (1998). Investigating human intuition: Knowing without knowing why. The Psychologist, 11, 217–220.
  • Clement, J. (1988). Observed methods for generating analogies in scientific problem solving. Cognitive Science, 12, 563–586.10.1207/s15516709cog1204_3
  • Clement, J. (1989). Learning via model construction and criticism. In J. A. Glover, R. Ronning, & C. Reynolds (Eds.), Handbook of creativity: Assessment, theory and research (pp. 341–381). New York, NY: Plenum.10.1007/978-1-4757-5356-1
  • Clement, J. J. (2008). Creative model construction in scientists and students. Dordrecht: Springer.10.1007/978-1-4020-6712-9
  • Clement, J., Brown, D. E., & Zietsman, A. (1989). Not all preconceptions are misconceptions: Finding ‘anchoring conceptions’ for grounding instruction on students’ intuitions. International Journal of Science Education, 11, 554–565.10.1080/0950069890110507
  • Cloninger, K. (2006). Making intuition practical: A new theoretical framework for education. Curriculum and Teaching Dialogue, 8, 15–28.
  • Cohen, R., & Yarden, A. (2009). Experienced junior-high-school teachers’ PCK in light of a curriculum change: “The cell is to be studied longitudinally”. Research in Science Education, 39, 131–155.10.1007/s11165-008-9088-7
  • Csikszentmihalyi, M., & Sawyer, K. (1995). Creative insight: The social dimension of a solitary moment. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 329–363). Cambridge, MA: MIT Press.
  • Dane, E., & Pratt, M. G. (2007). Exploring intuition and its role in managerial decision making. Academy of Management Review, 32, 33–54.10.5465/AMR.2007.23463682
  • Danielak, B. A., Gupta, A., & Elby, A. (2010). The marginalized identities of sense-makers: Reframing engineering student retention. In Frontiers in Education Conference (FIE), 2010 IEEE. Retrieved February 6, 2015, from http://arxiv.org/pdf/1003.4655.pdf
  • Davidson, J. E., & Sternberg, R. J. (1984). The role of insight in intellectual giftedness. Gifted Child Quarterly, 28, 58–64.10.1177/001698628402800203
  • De Kleer, J., & Brown, J. S. (1984). A qualitative physics based on confluences. Artificial Intelligence, 24, 7–83.10.1016/0004-3702(84)90037-7
  • DeHaan, R. L. (2009). Teaching creativity and inventive problem solving in science. Cell Biology Education, 8, 172–181.10.1187/cbe.08-12-0081
  • Dembo, M. H., & Howard, K. (2007). Advice about the use of learning styles: A major myth in education. Journal of College Reading and Learning, 37, 101–109.10.1080/10790195.2007.10850200
  • diSessa, A. A. (1985). Learning about knowing. In E. L. Klein (Ed.), New directions for child development: Children and computers (Vol. 28, pp. 97–124). San Francisco, CA: Jossey-Bass.
  • diSessa, A. A. (1986). Artificial worlds and real experience. Instructional Science, 14, 207–227.10.1007/BF00051821
  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10, 105–225.10.1080/07370008.1985.9649008
  • diSessa, A. A. (2000). Changing minds: Computers, learning, and literacy. Cambridge, MA: MIT Press.
  • diSessa, A. A. (2002). Why “conceptual ecology” is a good idea. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 29–60). Dordrecht: Kluwer.
  • Dominowski, R. L., & Dallob, P. (1995). Insight and problem solving. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 33–62). Cambridge, MA: The MIT Press.
  • Dove, G. O. (2011). On the need for embodied and dis-embodied cognition. Frontiers in Cognition, 1, 1–13, Article 242.
  • Dow, G. T., & Mayer, R. E. (2004). Teaching students to solve insight problems: Evidence for domain specificity in creativity training. Creativity Research Journal, 16, 389–398.10.1080/10400410409534550
  • Dresp-Langley, B. (2012). Why the brain knows more than we do: Non-conscious representations and their role in the construction of conscious experience. Brain Sciences, 2, 1–21.
  • Dreyfus, S. E., & Dreyfus, H. L. (1980). A five-stage model of the mental activities involved in directed skill acquisition. Technical report operations research centre. Berkeley, CA: University of California.
  • Driver, R., Guesne, E., & Tiberghien, A. (1985). Children’s ideas and the learning of science. Buckingham: Open University Press.
  • Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science. London: Routledge.
  • Duit, R. (1994, September 26–October 1). The constructivist view in science education: What it has to offer and what should not be expected from it. Paper presented at the International Conference: Science and Mathematics for the 21st Century: Towards innovatory approaches, Concepcion, Chile. Retrieved February 6, 2015, from http://www.cienciamao.usp.br/dados/ienci/_theconstructivistviewins.artigocompleto.pdf
  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25, 671–688.10.1080/09500690305016
  • Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 365–395). Cambridge, MA: MIT Press.
  • Duncker, K. (1945). On problem solving. Psychological Monographs, 58(5), 270, i–113.
  • Dyson, F. J. (1972). Missed opportunities. Bulletin of the American Mathematical Society, 78, 635–653.10.1090/S0002-9904-1972-12971-9
  • Entwistle, N., & Nisbet, J. (2013). The nature and experience of academic understanding. The Psychology of Education, 37, 5–14.
  • Epstein, L. C. (2009). Thinking physics: Understandable practical reality. San Francisco, CA: Insight Press.
  • Felder, R. M., Felder, G. N., & Dietz, E. J. (2002). The effects of personality type on engineering student performance and attitudes. Journal of Engineering Education, 91, 3–17.10.1002/jee.2002.91.issue-1
  • Felder, R. M., & Silverman, L. K. (1988). Learning and teaching styles in engineering education. Engineering Education, 78, 674–681.
  • Fensham, P. J., & Marton, F. (1992). What has happened to intuition in science education? Research in Science Education, 22, 114–122.10.1007/BF02356886
  • Feyerabend, P. (1970). Against method: Outline of an anarchistic theory of knowledge. In M. Radner & W. Winokur (Eds.), Minnesota studies in the philosophy of science (Vol. IV, Theories & Methods of Physics and Psychology, pp. 17–130). Minneapolis: University of Minnesota.
  • Feynman, R. (1985). Surely you’re joking Mr Feynman. New York, NY: Bantam Books.
  • Feynman, R. P. (2013). Laws and intuition. In R. P. Feynman, M. A. Gottlieb, & R. Leighton (Eds.), Feynman’s tips on physics: Reflections, advice, insights, practice (pp. 61–89). New York, NY: Basic Books.
  • Fischbein, E. (1987). Intuition in science and mathematics. Dordrecht: Reidel.
  • Fischbein, E., Tirosh, D., Stavy, R., & Oster, A. (1990). The autonomy of mental models. For the Learning of Mathematics, 10, 23–30.
  • Fisher, K., & Moody, D. (2002). Student misconceptions in biology. In K. M. Fisher, J. H. Wandersee, & D. E. Moody (Eds.), Mapping biology knowledge (pp. 55–75). Dordrecht: Springer.10.1007/0-306-47225-2
  • Flick, L. B. (1993). The meanings of hands-on science. Journal of Science Teacher Education, 4, 1–8.10.1007/BF02628851
  • Forbus, K. D. (1984). Qualitative process theory. Artificial Intelligence, 24, 85–168.10.1016/0004-3702(84)90038-9
  • Fredrickson, B. L. (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56, 218–226.10.1037/0003-066X.56.3.218
  • Fuller, R. G. (1993). Millikan lecture 1992: Hypermedia and the knowing of physics: Standing upon the shoulders of giants. American Journal of Physics, 61, 300–304.10.1119/1.17260
  • Furió, C., Calatayud, M. L., Barcenas, S. L., & Padilla, O. M. (2000). Functional fixedness and functional reduction as common sense reasonings in chemical equilibrium and in geometry and polarity of molecules. Science Education, 84, 545–565.10.1002/(ISSN)1098-237X
  • Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155–170.10.1207/s15516709cog0702_3
  • Gentner, D., & Markman, A. (1997). Structure mapping in analogy and similarity. American Psychologist, 52, 45–56.10.1037/0003-066X.52.1.45
  • Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12, 306–355.10.1016/0010-0285(80)90013-4
  • Gilbert, J. K., & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10, 61–98.10.1080/03057268308559905
  • Gladwell, M. (2005). Blink: The power of thinking without thinking. New York, NY: Little, Brown.
  • Glöckner, A., & Ebert, I. D. (2011). Legal intuition and expertise. In M. Sinclair (Ed.), Handbook of intuition research (pp. 157–167). Cheltenham: Edward Elgar.
  • Glöckner, A., & Witteman, C. (2010). Foundations for tracing intuition. New York, NY: Psychology Press.
  • Goldberg, P. (1985). The intuitive edge: Understanding and developing intuition. Wellingborough: Turnstone.
  • Goldberg, R. F., & Thompson-Schill, S. L. (2009). Developmental “roots” in mature biological knowledge. Psychological Science, 20, 480–487.10.1111/psci.2009.20.issue-4
  • Gruber, H. E. (1995). Insight and affect in the history of science. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 397–431). Cambridge, MA: MIT Press.
  • Gupta, A., Elby, A., & Conlin, L. D. (2014). How substance-based ontologies for gravity can be productive: A case study. Physical Review Special Topics-Physics Education Research, 10, 010113.10.1103/PhysRevSTPER.10.010113
  • Hall, K. H. (2002). Reviewing intuitive decision-making and uncertainty: The implications for medical education. Medical Education, 36, 216–224.10.1046/j.1365-2923.2002.01140.x
  • Halpern, D. F. (2005). That aha moment when understanding happens-that is why I teach. In T. A. Benson, C. Burke, A. Amstadter, R. Siney, V. Hevern, B. Beins, & W. Buskist (Eds.), Teaching psychology in autobiography: Perspectives from exemplary psychology teachers (pp. 141–146). Society for the Teaching of Psychology. E-Book available from the Society for the Teaching of Psychology. Retrieved February 6, 2015, from http://teachpsych.org/ebooks/tia2005/index.php#.UihJnGR4aEw
  • Hammer, D. (1989). Two approaches to learning physics. The Physics Teacher, 27, 664–670.10.1119/1.2342910
  • Hammer, D. (1994). Epistemological beliefs in introductory physics. Cognition and Instruction, 12, 151–183.10.1207/s1532690xci1202_4
  • Hammer, D., & Elby, A. (2003). Tapping epistemological resources for learning physics. Journal of the Learning Sciences, 12, 53–90.10.1207/S15327809JLS1201_3
  • Hammond, K. R. (1980). The integration of research in judgment and decision theory (Report No. 226). Boulder: University of Colorado, Center for Research on Judgment and Policy.
  • Hodgkinson, G. P., & Sadler-Smith, E. (2011). Investigating intuition: Beyond self-report. In M. Sinclair (Ed.), Handbook of intuition research (pp. 52–66). Cheltenham: Edward Elgar.
  • Hodgkinson, G. P., Sadler-Smith, E., Sinclair, M., & Ashkanasy, N. M. (2009). More than meets the eye? Intuition and analysis revisited. Personality and Individual Differences, 47, 342–346.10.1016/j.paid.2009.03.025
  • Hodson, D. (1993). Re-thinking old ways: Towards a more critical approach to practical work in school science. Studies in Science Education, 22, 85–142.10.1080/03057269308560022
  • Hofer, B. K. (2001). Personal epistemology research: Implications for learning and teaching. Educational Psychology Review, 13, 353–383.10.1023/A:1011965830686
  • Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67, 88–140.10.3102/00346543067001088
  • Hogarth, R. (2001). Educating intuition. Chicago, IL: The University of Chicago Press.
  • Howe, C., Devine, A., & Taylor Tavares, J. (2013). Supporting conceptual change in school science: A possible role for tacit understanding. International Journal of Science Education, 35, 864–883.10.1080/09500693.2011.585353
  • Irvine, W. B. (2015). Aha!: The moments of insight that shape our world. Oxford: Oxford University Press.
  • Jansen, V. A. (2001). The dynamics of two diffusively coupled predator–prey populations. Theoretical Population Biology, 59, 119–131.10.1006/tpbi.2000.1506
  • Jargocki, C. P. (1983). More science braintwisters and paradoxes. New York, NY: Van Nostrand Reinhold.
  • Jargodzki, C., & Potter, F. (2001). Mad about physics: Braintwisters, paradoxes, and curiosities. New York, NY: Wiley.
  • Jargodzki, C., & Potter, F. (2004). Mad about modern physics: Braintwisters, paradoxes, and curiosities. New York, NY: Wiley.
  • Jeng, M. (2006). A selected history of expectation bias in physics. American Journal of Physics, 74, 578–583.10.1119/1.2186333
  • Jung, C. G. (1971). Psychological types. Princeton, NJ: Princeton University Press.
  • Jung-Beeman, M. J., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., … Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2, 500–510.
  • Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded rationality. American Psychologist, 58, 697–720.10.1037/0003-066X.58.9.697
  • Kahneman, D. (2011). Thinking, fast and slow. London: Penguin.
  • Kardash, C. M., & Howell, K. L. (2000). Effects of epistemological beliefs and topic-specific beliefs on undergraduates’ cognitive and strategic processing of dual-positional text. Journal of Educational Psychology, 92, 524–535.10.1037/0022-0663.92.3.524
  • Kelemen, D., Rottman, J., & Seston, R. (2013). Professional physical scientists display tenacious teleological tendencies: Purpose-based reasoning as a cognitive default. Journal of Experimental Psychology: General, 142, 1074–1083.10.1037/a0030399
  • Keller, A. (2000). Reminiscences on the discovery of chain folded single crystals. Polymer, 41, 8751–8754.10.1016/S0032-3861(00)00269-X
  • Kershaw, T. C., & Ohlsson, S. (2001). Training for insight: The case of the nine-dot problem. In J. D. Moore & K. Stenning (Eds.), Proceedings of the 23rd annual conference of the cognitive science society (pp. 489–493). Mahwah, NJ: Erlbaum.
  • Keserű, G. M., Soós, T., & Kappe, C. O. (2014). Anthropogenic reaction parameters – the missing link between chemical intuition and the available chemical space. Chemical Society Reviews, 43, 5387–5399.10.1039/C3CS60423C
  • Koestler, A. (1964). The act of creation. London: Hutchinson.
  • Koshland Jr., D. E. (2007). Philosophy of science: The cha-cha-cha theory of scientific discovery. Science, 317, 761–762.10.1126/science.1147166
  • Kosso, P. (2002). The omniscienter: Beauty and scientific understanding. International Studies in the Philosophy of Science, 16, 39–48.10.1080/02698590120118819
  • Kounios, J., & Beeman, M. (2009). The Aha! moment. The cognitive neuroscience of insight. Current Directions in Psychological Science, 18, 210–216.10.1111/cdir.2009.18.issue-4
  • Kounios, J., Frymiare, J. L., Bowden, E. M., Fleck, J. I., Subramaniam, K., Parrish, T. B., & Jung-Beeman, M. (2006). The prepared mind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17, 882–890.10.1111/j.1467-9280.2006.01798.x
  • Kroes, P. (1989). Structural analogies between physical systems. The British Journal for the Philosophy of Science, 40, 145–154.10.1093/bjps/40.2.145
  • Kuhn, T. S. (1993). Foreword. In P. Hoyningen-Huene (Ed.), Reconstructing scientific revolutions: Thomas S. Kuhn’s philosophy of science (pp. xi–xiii). Chicago, IL: University of Chicago Press.
  • Kuiper, J. (1994). Student ideas of science concepts: Alternative frameworks? International Journal of Science Education, 16, 279–292.10.1080/0950069940160303
  • Lakoff, G., & Johnson, M. (1980). Metaphors we live by. London: University of Chicago Press.
  • Lappi, O. (2013). Qualitative quantitative and experimental concept possession, criteria for identifying conceptual change in science education. Science & Education, 22, 1347–1359.
  • Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208, 1335–1342.10.1126/science.208.4450.1335
  • Laughlin, C. (1997). The nature of intuition. In R. Davis–Floyd & P. Arvidson (Eds.), Intuition: The inside story: Interdisciplinary perspectives (pp. 19–38). London: Routledge.
  • Levi, M. (2012). Why cats land on their feet: And 76 other physical paradoxes and puzzles. Princeton, NJ: Princeton University Press.
  • Lewicki, P., Hill, T., & Czyzewska, M. (1992). Nonconscious acquisition of information. American Psychologist, 47, 796–801.10.1037/0003-066X.47.6.796
  • Lieberman, M. D. (2000). Intuition: A social cognitive neuroscience approach. Psychological Bulletin, 126, 109–137.10.1037/0033-2909.126.1.109
  • Lising, L., & Elby, A. (2005). The impact of epistemology on learning: A case study from introductory physics. American Journal of Physics, 73, 372–382.10.1119/1.1848115
  • Loughran, J. (2006). Towards a better understanding of science teaching. Teaching Education, 17, 109–119.10.1080/10476210600680317
  • Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology-Paris, 102, 59–70.10.1016/j.jphysparis.2008.03.004
  • Maloney, D. P. (2011). An overview of physics education research on problem solving. In C. Henderson & K. A. Harper (Eds.), Reviews in PER: Getting started in PER (Vol. 2). College Park, MD: American Association of Physics Teachers. Retrieved February 6, 2015, from http://www.per-central.org/items/detail.cfm?ID=11457
  • Marton, F., Fensham, P., & Chaiklin, S. (1994). A Nobel’s eye view of scientific intuition: Discussions with the Nobel prize‐winners in physics, chemistry and medicine (1970–86). International Journal of Science Education, 16, 457–473.10.1080/0950069940160406
  • Mason, L., Boscolo, P., Tornatora, M. C., & Ronconi, L. (2013). Besides knowledge: A cross-sectional study on the relations between epistemic beliefs, achievement goals, self-beliefs, and achievement in science. Instructional Science, 41, 49–79.10.1007/s11251-012-9210-0
  • Mayer, R. E. (1995). The search for insight: Grappling with Gestalt psychology’s unanswered questions. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 3–32). Cambridge, MA: The MIT Press.
  • McCloskey, M. (1983). Intuitive physics. Scientific American, 248, 114–122.
  • McCutcheon, H. H., & Pincombe, J. (2001). Intuition: An important tool in the practice of nursing. Journal of Advanced Nursing, 35, 342–348.10.1046/j.1365-2648.2001.01882.x
  • McLaughlin, J. S. (2005). Classrooms without walls. Journal of College Science Teaching, 34(4), 5–6.
  • Merleau-Ponty, M. (1945/2005). Phenomenology of perception (C. Smith, Trans.). London: Routledge.
  • Metcalfe, J., & Wiebe, D. (1987). Intuition in insight and noninsight problem solving. Memory & Cognition, 15, 238–246.10.3758/BF03197722
  • Miller, G. A. (1962). Psychology: The science of mental life. New York, NY: Harper & Row.
  • Miller, G. A. (1967). The psychology of communication: Seven essays. New York, NY: Basic Books.
  • Moore, W. S. (2002). Understanding learning in a postmodern world: Reconsidering the Perry scheme of ethical and intellectual development. In B. K. Hofer & P. R. Pintrich (Eds.), The psychology of beliefs about knowledge and knowing (pp. 17–36). Mahwah, NJ: Lawrence Erlbaum.
  • Muijs, D., & Reynolds, D. (2010). Effective teaching: Evidence and practice. London: Sage.
  • Myers, D. G. (2004). Intuition: Its powers and perils. London: Yale University Press.
  • Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 5–22). New York, NY: Plenum.10.1007/978-1-4615-4813-3
  • Nikitina, S., & Mansilla, V. B. (2003). Three strategies for interdisciplinary math and science teaching: A case of the Illinois Mathematics and Science Academy. Retrieved February 6, 2015, from http://www.dlsu.edu.ph/offices/avcaa/_pdf/stategies-math-science-teaching.pdf
  • Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84, 231–259.10.1037/0033-295X.84.3.231
  • Nussbaum, J. (1989). Classroom conceptual change: Philosophical perspectives. International Journal of Science Education, 11, 530–540.10.1080/0950069890110505
  • O'Brien, T. P., Bernold, L. E., & Akroyd, D. (1998). Myers-Briggs type indicator and academic achievement in engineering education. International Journal of Engineering Education, 14, 311–315.
  • Oliphant, M. (1972). Some personal recollections of Rutherford, the man. Notes and Records of the Royal Society, 27, 7–23.10.1098/rsnr.1972.0003
  • Osborne, J., & Collins, S. (2000). Pupils’ and parents’ views of the school science curriculum. School Science Review, 82, 23–31.
  • Özdemir, G., & Clark, D. B. (2007). An overview of conceptual change theories. Eurasia Journal of Mathematics, Science & Technology Education, 3, 351–361.
  • Parnafes, O. (2012). Developing explanations and developing understanding: Students explain the phases of the moon using visual representations. Cognition and Instruction, 30, 359–403.10.1080/07370008.2012.716885
  • Perry, W. B. (1970). Forms of intellectual and ethical development in the college years: A scheme. New York, NY: Holt, Rinehart & Winston.
  • Petitmengin-Peugeot, C. (1999). The intuitive experience. Journal of Consciousness Studies, 6, 43–77.
  • Planck, M. (1950). Scientific autobiography and other papers. London: Williams and Norgate.
  • Polanyi, M. (1966/2009). The tacit dimension. Chicago, IL: University of Chicago Press.
  • Polanyi, M. (1966). The logic of tacit inference. Philosophy, 41(155), 1–18.10.1017/S0031819100066110
  • Polanyi, M. (1967). The growth of science in society. Minerva, 5, 533–545.10.1007/BF01096782
  • Pomeroy, D. (1993). Implications of teachers’ beliefs about the nature of science: Comparison of the beliefs of scientists, secondary science teachers, and elementary teachers. Science Education, 77, 261–278.10.1002/(ISSN)1098-237X
  • Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson.
  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211–227.10.1002/(ISSN)1098-237X
  • Preece, P. F. (1984). Intuitive science: Learned or triggered? European Journal of Science Education, 6, 7–10.10.1080/0140528840060103
  • Pronin, E. (2009). The introspection illusion. In M. P. Zanna (Ed.), Advances in experimental social psychology (Vol. 14, pp. 1–67). San Diego, CA: Academic Press.
  • Qian, G., & Alvermann, D. (1995). Role of epistemological beliefs and learned helplessness in secondary school students’ learning science concepts from text. Journal of Educational Psychology, 87, 282–292.10.1037/0022-0663.87.2.282
  • Qian, G., & Alvermann, D. (2000). Relationship between epistemological beliefs and conceptual change learning. Reading & Writing Quarterly, 16, 59–74.
  • Ragan, M. A., & Chan, C. X. (2013). Biological intuition in alignment-free methods: Response to Posada. Journal of Molecular Evolution, 77(1–2), 1–2.10.1007/s00239-013-9573-0
  • Ramsland, K. M. (2012). Snap: Seizing your aha! moments. Amherst, NY: Prometheus Books.
  • Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of Experimental Psychology: General, 118, 219–235.10.1037/0096-3445.118.3.219
  • Redish, E. F. (2003). Teaching physics with the physics suite. Hoboken, NJ: Wiley.
  • Redish, E. F. (2010). Introducing students to the culture of physics: Explicating elements of the hidden curriculum. arXiv preprint arXiv:1008.0578. Retrieved February 6, 2015, from http://arxiv.org/pdf/1008.0578v1.pdf
  • Rees, A. R. (2015). The antibody molecule: From antitoxins to therapeutic antibodies. Oxford: Oxford University Press.
  • Reif, F. (1987). Interpretation of scientific or mathematical concepts: Cognitive issues and instructional implications. Cognitive Science, 11, 395–416.10.1207/s15516709cog1104_1
  • Reif, F. (2008). Applying cognitive science to education: Thinking and learning in scientific and other complex domains. Cambridge, MA: MIT Press.
  • Reiner, M., & Gilbert, J. (2000). Epistemological resources for thought experimentation in science learning. International Journal of Science Education, 22, 489–506.10.1080/095006900289741
  • Riener, C., Proffitt, D. R., & Salthouse, T. (2005). A psychometric approach to intuitive physics. Psychonomic Bulletin & Review, 12, 740–745.
  • Robert, M. (1990). Sex-typing of the water-level task: There is more than meets the eye. International Journal of Psychology, 25, 475–490.10.1080/00207599008247878
  • Rohrlich, F. (1996). The unreasonable effectiveness of physical intuition: Success while ignoring objections. Foundations of Physics, 26, 1617–1626.10.1007/BF02282125
  • Royal Society. (2008). Science and mathematics education 14–19: A ‘state of the nation’ report on the participation and attainment of 14–19 year olds in science and mathematics in the UK, 1996–2007. Retrieved February 6, 2015, from https://royalsociety.org/education/policy/state-of-nation/14-19/
  • Rule, D. C., & Bendixen, L. D. (2010). The integrative model of personal epistemology development: Theoretical underpinnings and implications for education. In L. Bendixen & F. Feucht (Eds.), Personal epistemology in the classroom: Theory, research, and implications for practice (pp. 94–123). Cambridge: Cambridge University Press.10.1017/CBO9780511691904
  • Russell, T., & Munby, H. (1989). Science as a discipline, science as seen by students and teachers’ professional knowledge. In R. Millar (Ed.), Doing science: Images of science in science education (pp. 107–125). Abingdon: Routledge.
  • Sadler-Smith, E. (2008). Inside intuition. Abingdon: Routledge.
  • Sadler-Smith, E., & Burke, L. A. (2009). Fostering intuition in management education activities and resources. Journal of Management Education, 33, 239–262.
  • Salk, J. (1983). Anatomy of reality: Merging of intuition and reason. New York, NY: Columbia University Press.
  • Schommer, M. (1990). Effects of beliefs about the nature of knowledge on comprehension. Journal of Educational Psychology, 82, 498–504.10.1037/0022-0663.82.3.498
  • Schooler, J. W., & Dougal, S. (1999). The symbiosis of subjective and experimental approaches to intuition. Journal of Consciousness Studies, 6, 280–287.
  • Schwaller, T. (2011). Occasional white boarding: Examining the effects on physics students’ understanding of motion graphs (Unpublished Master’s thesis). University of Michigan. Retrieved February 6, 2015, from http://services.lib.mtu.edu/etd/THESIS/2011/Education/schwaller/report.pdf
  • Shavinina, L. V. (2004). Explaining high abilities of Nobel laureates. High Ability Studies, 15, 243–254.10.1080/1359813042000314808
  • Sherin, B. (2006). Common sense clarified: The role of intuitive knowledge in physics problem solving. Journal of Research in Science Teaching, 43, 535–555.10.1002/(ISSN)1098-2736
  • Shive, J. N., & Weber, R. L. (1982). Similarities in physics. Bristol: Adam Hilger.
  • Shtulman, A., & Valcarcel, J. (2012). Scientific knowledge suppresses but does not supplant earlier intuitions. Cognition, 124, 209–215.10.1016/j.cognition.2012.04.005
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.10.3102/0013189X015002004
  • Siegler, R. S., & Crowley, K. (1991). The microgenetic method: A direct means for studying cognitive development. American Psychologist, 46, 606–620.10.1037/0003-066X.46.6.606
  • Simon, D. P., & Simon, H. A. (1978). Individual differences in solving physics problems. In R. S. Sigler (Ed.), Children’s thinking: What develops? (pp. 325–348). Hillsdale, NJ: Lawrence Erlbaum.
  • Simon, H. A. (1986). The information processing explanation of Gestalt phenomena. Computers in Human Behavior, 2, 241–255.10.1016/0747-5632(86)90006-3
  • Sinclair, M. (2010). Misconceptions about intuition. Psychological Inquiry, 21, 378–386.10.1080/1047840X.2010.523874
  • Sinclair, M. (Ed.). (2011). Handbook of intuition research. Cheltenham: Edward Elgar.
  • Sinclair, M. (Ed.). (2014). Handbook of research methods on intuition. Cheltenham: Edward Elgar.
  • Sinclair, M., & Ashkanasy, N. M. (2005). Intuition: Myth or a decision-making tool? Management Learning, 36, 353–370.10.1177/1350507605055351
  • Singh, C. (2002). When physical intuition fails. American Journal of Physics, 70, 1103–1109.10.1119/1.1512659
  • Singh, V. (2011). Using NASA science news articles to enhance learning in the classroom. The Physics Teacher, 49, 482–483.10.1119/1.3651728
  • Sio, U., & Ormerod, T. C. (2009). Does incubation enhance problem solving? A meta-analytic review. Psychological Bulletin, 135, 94–120.10.1037/a0014212
  • Slatkin, M. (1974). Competition and regional coexistence. Ecology, 55, 128–134.10.2307/1934625
  • Smith, E. A. (2001). The role of tacit and explicit knowledge in the workplace. Journal of Knowledge Management, 5, 311–321.10.1108/13673270110411733
  • Smith, S. M. (1995). Getting into and out of mental ruts: A theory of fixation, incubation, and insight. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 229–251). Cambridge, MA: MIT Press.
  • Songer, N. B., & Linn, M. C. (1991). How do students’ views of science influence knowledge integration? Journal of Research in Science Teaching, 28, 761–784.10.1002/(ISSN)1098-2736
  • Stahl, S. A. (1999). Different strokes for different folks? A critique of learning styles. American Educator, 23(3), 27–31.
  • Stavy, R., Babai, R., Tsamir, P., Tirosh, D., Lin, F. L., & McRobbie, C. (2006). Are intuitive rules universal? International Journal of Science and Mathematics Education, 4, 417–436.10.1007/s10763-005-9012-9
  • Sternberg, R. J., & Davidson, J. E. (1983). Insight in the gifted. Educational Psychologist, 18, 51–57.10.1080/00461528309529261
  • Sternberg, R. J., & Davidson, J. E. (1995). Preface. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. xv–xviii). Cambridge, MA: The MIT Press.
  • Strike, K., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice (pp. 147–176). Albany, NY: State University of New York Press.
  • Swaak, J., & de Jong, T. (1996). Measuring intuitive knowledge in science: The development of the what-if test. Studies in Educational Evaluation, 22, 341–362.10.1016/0191-491X(96)00019-3
  • Taber, K. S. (2001). The mismatch between assumed prior knowledge and the learner’s conceptions: A typology of learning impediments. Educational Studies, 27, 159–171.10.1080/03055690120050392
  • Taber, K. S. (2003). Mediating mental models of metals: Acknowledging the priority of the learner’s prior learning. Science Education, 87, 732–758.10.1002/(ISSN)1098-237X
  • Taber, K. S. (2004). Intuitive physics: But whose intuition are we talking about? Physics Education, 39, 123–124.10.1088/0031-9120/39/2/F01
  • Taber, K. S. (2009). Progressing science education: Constructing the scientific research programme into the contingent nature of learning science. Dordrecht: Springer.10.1007/978-90-481-2431-2
  • Taber, K. S. (2013). Modelling learners and learning in science education: Developing representations of concepts, conceptual structure and conceptual change to inform teaching and research. Dordrecht: Springer.10.1007/978-94-007-7648-7
  • Taber, K. S. (2014). The significance of implicit knowledge for learning and teaching chemistry. Chemistry Education Research and Practice, 15, 447–461.10.1039/C4RP00124A
  • Tallant, J. (2013). Intuitions in physics. Synthese, 190, 2959–2980.10.1007/s11229-012-0113-z
  • Thornton, R. K. (1997). Conceptual dynamics: Following changing student views of force and motion. In E. F. Redish & J. S. Rigdan (Eds.), The changing role of physics departments in modern universities, Proceedings of the International Conference on Undergraduate Physics Education (pp. 241–266). New York, NY: Wiley.
  • Thorsland, M. N., & Novak, J. D. (1974). The identification and significance of intuitive and analytic problem solving approaches among college physics students. Science Education, 58, 245–265.10.1002/(ISSN)1098-237X
  • Tirosh, D., Stavy, R., & Cohen, S. (1998). Cognitive conflict and intuitive rules. International Journal of Science Education, 20, 1257–1269.10.1080/0950069980201006
  • Treagust, D., & Duit, R. (2009). Multiple perspectives of conceptual change in science and the challenges ahead. Journal of Science and Mathematics Education in Southeast Asia, 32, 89–104.
  • Tsai, C. C. (1998). An analysis of scientific epistemological beliefs and learning orientations of Taiwanese eighth graders. Science Education, 82, 473–489.10.1002/(ISSN)1098-237X
  • Tyson, L. M., Venville, G. J., Harrison, A. G., & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81, 387–404.10.1002/(ISSN)1098-237X
  • Von Hofsten, C. (1983). Catching skills in infancy. Journal of Experimental Psychology: Human Perception and Performance, 9, 75–85.
  • Von Hofsten, C., & Rosander, K. (1996). The development of gaze control and predictive tracking in young infants. Vision Research, 36, 81–96.10.1016/0042-6989(95)00054-4
  • Von Hofsten, C., Vishton, P., Spelke, E. S., Feng, Q., & Rosander, K. (1998). Predictive action in infancy: Tracking and reaching for moving objects. Cognition, 67, 255–285.10.1016/S0010-0277(98)00029-8
  • Vosniadou, S. (2008). Conceptual change research: An introduction. In S. Vosniadou (Ed.), International handbook of research on conceptual change (1st ed., pp. xiii–xxviii). New York, NY: Routledge.
  • Vosniadou, S. (2013a). Conceptual change research: An introduction. In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed., pp. 1–7). New York, NY: Routledge.
  • Vosniadou, S. (2013b). Conceptual change in learning and instruction: The framework theory approach. In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed., pp. 11–30). New York, NY: Routledge.
  • Vosniadou, S., & Ioannides, C. (1998). From conceptual development to science education: A psychological point of view. International Journal of Science Education, 20, 1213–1230.10.1080/0950069980201004
  • Wagner, R. K., & Sternberg, R. J. (1985). Practical intelligence in real-world pursuits: The role of tacit knowledge. Journal of Personality and Social Psychology, 49, 436–458.10.1037/0022-3514.49.2.436
  • Wagner, U., Gais, S., Haider, H., Verleger, R., & Born, J. (2004). Sleep inspires insight. Nature, 427, 352–355.10.1038/nature02223
  • Walker, J. (2008). The flying circus of physics with answers. New York, NY: Wiley.
  • Wankat, P. C., & Oreovicz, F. S. (1993). Teaching engineering. New York, NY: McGraw-Hill.
  • Watson, J. D. (1980). The double helix: A personal account of the discovery of the structure of DNA. New York, NY: Norton.
  • Watts, M., & Taber, K. S. (1996). An explanatory gestalt of essence: Students’ conceptions of the ‘natural’ in physical phenomena. International Journal of Science Education, 18, 939–954.10.1080/0950069960180806
  • Weisberg, R. W. (1995). Prolegomena to theories of insight in problem solving: A taxonomy of problems. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 157–196). Cambridge, MA: MIT Press.
  • Wellington, J., & Osborne, J. F. (2001). Language and literacy in science education. Buckingham: Open University Press.
  • Wertheim, M. (2011). Physics on the fringe: Smoke rings, circlons, and alternative theories of everything. New York, NY: Walker.
  • West, L. H. T. (1982). The researchers and their work. In C. Sutton & L. West (Eds.), Investigating children’s existing ideas about science. Leicester: University of Leicester, School of Education.
  • West, L. H. T., Fensham, P. J., & Garrad, J. E. (1985). Describing the cognitive structure of learners. In L. H. T. West & L. H. Pines (Eds.), Cognitive structure and conceptual change (pp. 29–49). London: Academic Press.
  • Wiser, M., & Amin, T. (2001). “Is heat hot?” Inducing conceptual change by integrating everyday and scientific perspectives on thermal phenomena. Learning and Instruction, 11, 331–355.10.1016/S0959-4752(00)00036-0
  • Wolpert, L. (1992). The unnatural nature of science. London: Faber and Faber.
  • Wren, J. D., Bekeredjian, R., Stewart, J. A., Shohet, R. V., & Garner, H. R. (2004). Knowledge discovery by automated identification and ranking of implicit relationships. Bioinformatics, 20, 389–398.10.1093/bioinformatics/btg421
  • Wyatt, J. C. (2001). Management of explicit and tacit knowledge. Journal of the Royal Society of Medicine, 94, 6–9.
  • Ylikoski, P. (2009). The illusion of depth of understanding in science. In H. De Regt, S. Leonelli, & K. Eigner (Eds.), Scientific understanding: Philosophical perspectives (pp. 100–119). Pittsburgh, PA: Pittsburgh University Press.
  • Yukawa, H. (1973). Creativity and intuition: A physicist looks at east and west. Tokyo: Kadansha International.
  • Zietsman, A., & Clement, J. (1997). The role of extreme case reasoning in instruction for conceptual change. Journal of the Learning Sciences, 6, 61–89.10.1207/s15327809jls0601_4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.