1,143
Views
15
CrossRef citations to date
0
Altmetric
Articles

The application of the microgenetic method to studies of learning in science education: characteristics of published studies, methodological issues and recommendations for future research

&

References

  • Adolph, K. E., Robinson, S. R., Young, J. W., & Gill-Alvarez, F. (2008). What is the shape of developmental change? Psychological Review, 115, 527–543.10.1037/0033-295X.115.3.527
  • Alberini, C. (2011). The role of reconsolidation and the dynamic process of long-term memory formation and storage. Frontiers in Behavioral Neuroscience, 5(12), 1–10.
  • Azmitia, M., & Crowley, C. (2001). The rhythms of scientific thinking: A study of collaboration in an earthquake microworld. In K. Crowley, C. D. Schunn, & T. Okada (Eds.), Designing for science: Implications from everyday, classroom, and professional settings (pp. 51–81). Mahwah, NJ: Erlbaum.
  • Baars, B. J., & Franklin, S. (2003). How conscious experience and working memory interact. Trends in Cognitive Sciences, 7, 166–172.10.1016/S1364-6613(03)00056-1
  • Berland, L. K., & Crucet, K. (2016). Epistemological trade-offs: Accounting for context when evaluating epistemological sophistication of student engagement in scientific practices. Science Education, 100, 5–29.10.1002/sce.2016.100.issue-1
  • Berland, L. K., & McNeill, K. L. (2010). A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94, 765–793.10.1002/sce.v94:5
  • Blackmore, S. (2002). There is no stream of consciousness. Journal of Consciousness Studies, 9, 17–28.
  • Bliss, J. (1995). Piaget and after: The case of learning science. Studies in Science Education, 25, 139–172.10.1080/03057269508560052
  • Blown, E. J., & Bryce, T. G. K. (2006). Knowledge restructuring in the development of children’s cosmologies. International Journal of Science Education, 28, 1411–1462.10.1080/09500690600718062
  • Brock, R. (2015). Intuition and insight: Two concepts that illuminate the tacit in science education. Studies in Science Education, 51, 127–167.10.1080/03057267.2015.1049843
  • Brown, A. L. (2004). Transforming schools into communities of thinking and learning about serious matters. In E. Scanlon, P. Murphy, J. Thomas, & E. Whitelegg (Eds.), Reconsidering science learning (pp. 74–90). London: Routledge Falmer.
  • Caballero, M. D., Greco, E. F., Murray, E. R., Bujak, K. R., Jackson Marr, M., Catrambone, R., … Schatz, M. F. (2012). Comparing large lecture mechanics curricula using the force concept inventory: A five thousand student study. American Journal of Physics, 80, 638–644.10.1119/1.3703517
  • Catán, L. (1986). The dynamic display of process: Historical development and contemporary uses of the microgenetic method. Human Development, 29, 252–263.10.1159/000273062
  • Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and transfer of the control of variables strategy. Child Development, 70, 1098–1120.10.1111/cdev.1999.70.issue-5
  • Cheng, M. H. M., & Wan, Z. H. (2015). Unpacking the paradox of Chinese science learners: Insights from research into Asian Chinese school students’ attitudes towards learning science, science learning strategies, and scientific epistemological views. Studies in Science Education, 52, 29–62.
  • Cheshire, A., Muldoon, K. P., Francis, B., Lewis, C. N., & Ball, L. J. (2007). Modelling change: New opportunities in the analysis of microgenetic data. Infant and Child Development, 16, 119–134.
  • Chi, M. T. H. (1997). Creativity: Shifting across ontological categories flexibly. In B. T. Ward & S. M. Smith (Eds.), Creative thought: An investigation of conceptual structures and processes (pp. 209–234). Washington, DC: American Psychological Association.10.1037/10227-000
  • Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.10.1207/s15516709cog0502_2
  • Chi, M. T. H., & Roscoe, R. D. (2002). The processes and challenges of conceptual change. In M. Limón & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 3–27). Dordrecht: Springer.10.1007/0-306-47637-1
  • Chinn, C. A. (1997). A microgenetic study of learning about the molecular theory of matter and chemical reactions ( Unpublished PhD thesis). Champaign, IL: University of Illinois at Urbana-Champaign.
  • Chinn, C. A. (2006). The microgenetic method: Current work and extensions to classroom research. In J. Green, G. Camilli, & P. Elmore (Eds.), Handbook of complementary methods in education research (pp. 439–456). Mahwah, NJ: Erlbaum.
  • Chinn, C. A., O’Donnell, A. M., & Jinks, T. S. (2000). The structure of discourse in collaborative learning. The Journal of Experimental Education, 69, 77–97.10.1080/00220970009600650
  • Clement, J. (2008). Creative model construction in scientists and students. Dordrecht: Springer.10.1007/978-1-4020-6712-9
  • Cook, T. (2002). Randomized experiments in educational policy research: A critical examination of the reasons the educational evaluation community has offered for not doing them. Educational Evaluation and Policy Analysis, 24, 175–199.10.3102/01623737024003175
  • Creswell, J. W., & Miller, D. L. (2000). Determining validity in qualitative inquiry. Theory Into Practice, 39, 124–130.10.1207/s15430421tip3903_2
  • Dennett, D. C. (1991). Consciousness explained. Boston, MA: Little, Brown and Company.
  • diSessa, A. (2000). Changing minds: Computers, learning, and literacy. Cambridge, MA: MIT Press.
  • diSessa, A. (2014). The construction of causal schemes: Learning mechanisms at the knowledge level. Cognitive Science, 38, 795–850.10.1111/cogs.2014.38.issue-5
  • Driver, R., Leach, J., Scott, P., & Wood-Robinson, C. (1994). Young people’s understanding of science concepts: Implications of cross-age studies for curriculum planning. Studies in Science Education, 24, 75–100.10.1080/03057269408560040
  • Duit, R., Roth, W., Komorek, M., & Withers, J. (1998). Conceptual change cum discourse analysis to understand cognition in a unit on chaotic systems: Towards an integrative perspective on learning in science. International Journal of Science Education, 20, 1059–1073.10.1080/0950069980200904
  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25, 671–688.10.1080/09500690305016
  • Eichler, M. L., Del Pino, J. C., & Fagundes, L. da C. (2004). Development of cognitive conducts during a computer simulated environmental analysis. Chemistry Education Research and Practice, 5, 157–174.10.1039/B4RP90018A
  • Feldon, D. F., & Gilmore, J. (2006). Patterns in children’s online behavior, scientific problem-solving: A large-N microgenetic study. In G. Clarebout & J. Elen (Eds.), Avoiding simplicity, confronting complexity: Advances in studying and designing (computer-based) powerful learning environments (pp. 117–125). Rotterdam: Sense Publishers.
  • Fisher, K., & Moody, D. (2002). Student misconceptions in biology. In J. H. Wandersee & D. Moody (Eds.), Mapping biology knowledge (pp. 55–75). New York, NY: Kluwer.10.1007/0-306-47225-2
  • Flynn, E., Pine, K., & Lewis, C. (2006). The microgenetic method time for change? The Psychologist, 19, 152–155.
  • Flynn, E., Pine, K., & Lewis, C. (2007). Using the microgenetic method to investigate cognitive development: An introduction. Infant and Child Development, 16, 1–6.10.1002/(ISSN)1522-7219
  • Flyvbjerg, B. (2006). Five misunderstandings about case-study research. Qualitative Inquiry, 12, 219–245.10.1177/1077800405284363
  • Gaito, J. (1961). Repeated measurements designs and counterbalancing. Psychological Bulletin, 58, 46–54.10.1037/h0046169
  • Garcia-Mila, M., & Andersen, C. (2007). Developmental change in notetaking during scientific inquiry. International Journal of Science Education, 29, 1035–1058.10.1080/09500690600931103
  • Garcia-Mila, M., Andersen, C., & Rojo, N. E. (2011). Elementary students’ laboratory record keeping during scientific inquiry. International Journal of Science Education, 33, 915–942.10.1080/09500693.2010.480986
  • Gelman, R., Romo, L., & Francis, W. S. (2002). Notebooks as windows on learning: The case of a science-into-ESL program. In N. Granott & J. Parziale (Eds.), Microdevelopment: Transition processes in development and learning (pp. 269–293). Cambridge: Cambridge University Press.10.1017/CBO9780511489709
  • Gilbert, J. K., & Watts, D. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10, 61–98.10.1080/03057268308559905
  • Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. New Brunswick, NJ: Aldine Transaction.
  • Goldin-Meadow, S., & Wagner Alibali, M. (2002). Looking at the hands through time: A microgenetic perspective on learning and instruction. In N. Granott & J. Parziale (Eds.), Microdevelopment: Transition processes in development and learning (pp. 80–106). Cambridge: Cambridge University Press.10.1017/CBO9780511489709
  • Ha, J., Lee, K., Lim, S., & Yang, I. (2016). A microgenetic study on changes of elementary students’ mental models regarding the particles constituting ice, water, and water vapor. Advanced Science and Technology Letters, 122, 181–185.10.14257/astl
  • Haglund, J., Jeppsson, F., & Schönborn, K. J. (2016). Taking on the heat – A narrative account of how infrared cameras invite instant inquiry. Research in Science Education, 46, 685–713.10.1007/s11165-015-9476-8
  • Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science Education, 84(3), 352–381.10.1002/(ISSN)1098-237X
  • Haskell, R. E. (2001). Transfer of learning: Cognition, instruction, and reasoning. San Diego, CA: Academic Press.10.1016/B978-012330595-4/50003-2
  • Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30, 141–158.10.1119/1.2343497
  • Hogan, K. (1999). Relating students’ personal frameworks for science learning to their cognition in collaborative contexts. Science Education, 83(1), 1–32.10.1002/(ISSN)1098-237X
  • Izsak, A. (2000). Inscribing the winch: Mechanisms by which students develop knowledge structures for representing the physical world with Algebra. Journal of the Learning Sciences, 9, 31–74.10.1207/s15327809jls0901_4
  • Johnson, K. E., & Mervis, C. B. (1994). Microgenetic analysis of first steps in children’s acquisition of expertise on shorebirds. Developmental Psychology, 30, 418–435.10.1037/0012-1649.30.3.418
  • Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: MIT Press.
  • Kuhn, D. (1995). Microgenetic study of change: What has it told us? Psychological Science, 6(3), 133–139.10.1111/j.1467-9280.1995.tb00322.x
  • Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94, 810–824.10.1002/sce.v94:5
  • Kuhn, D., & O’Loughlin, M. (1988). The coordination of theory and evidence. In D. Kuhn, E. Amsel, & M. O’Loughlin, (Eds.), The development of scientific thinking skills (pp. 104–205). New York, NY: Academic Press.
  • Kuhn, D., & Phelps, E. (1982). The development of problem solving strategies. In H. Reese (Ed.), Advances in child development and behavior (Vol. 17, pp. 1–44). New York, NY: Academic Press.
  • Kuhn, D., Schauble, L., & Garcia-Mila, M. (1992). Cross-domain development of scientific reasoning. Cognition and Instruction, 9, 285–327.10.1207/s1532690xci0904_1
  • Kvale, S. (1996). Interviews: An introduction to qualitative research interviewing. Thousand Oaks, CA: Sage.
  • Lachman, S. J. (1997). Learning is a process: Toward an improved definition of learning. The Journal of Psychology, 131, 477–480.10.1080/00223989709603535
  • Landauer, R. (1998). Condensed-matter physics: The noise is the signal. Nature, 392, 658–659.10.1038/33551
  • Lappi, O. (2013). Qualitative quantitative and experimental concept possession, criteria for identifying conceptual change in science education. Science & Education, 22, 1347–1359.10.1007/s11191-012-9459-3
  • Lasry, N., Rosenfield, S., Dedic, H., Dahan, A., & Reshef, O. (2011). The puzzling reliability of the force concept inventory. American Journal of Physics, 79, 909–912.10.1119/1.3602073
  • Lee, K., & Karmiloff-Smith, A. (2005). Macro- and microdevelopmental research: Assumptions, research strategies, constraints, and utilities. In N. Garnott & J. Parziale (Eds.), Microdevelopment transition processes in development and learning (pp. 243–266). Cambridge: Cambridge University Press.
  • Lüke, H. D. (1999). The origins of the sampling theorem. IEEE Communications Magazine, 37, 106–108.10.1109/35.755459
  • Magnusson, S. J. (1996). Complexities of learning with computer-based tools: A case of inquiry about sound and music in elementary school. Journal of Science Education and Technology, 5, 297–309.10.1007/BF01677126
  • Marton, F. (1983). Beyond individual differences. Educational Psychology, 3, 289–303.10.1080/0144341830030311
  • Maxwell, J. A. (2004). Causal explanation, qualitative research, and scientific inquiry in education. Educational Researcher, 33, 3–11.10.3102/0013189X033002003
  • Mayer, R. (2002). Rote versus meaningful learning. Theory Into Practice, 41, 226–232.10.1207/s15430421tip4104_4
  • Merriam, S. (1995). What can you tell from an N of 1?: Issues of validity and reliability in qualitative research. PAACE Journal of Lifelong Learning, 4, 50–60.
  • Miller, P. H., & Coyle, T. R. (1999). Developmental change: Lessons from microgenesis. In E. K. Scholnick, K. Nelson, S. A. Gelman, & P. H. Miller (Eds.), Conceptual development: Piaget’s legacy (pp. 209–239). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Mortimer, E. (1995). Conceptual change or conceptual profile change? Science & Education, 4, 267–285.10.1007/BF00486624
  • Mowrer, R. R., & Klein, S. B. (2001). The transitive nature of contemporary learning theory. In R. R. Mowrer & S. B. Klein (Eds.), Handbook of contemporary learning theories (pp. 1–21). New York, NY: Lawrence Erlbaum Associates Inc.
  • Nader, K., Schafe, G. E., & LeDoux, J. E. (2000). Reply-reconsolidation: The labile nature of consolidation theory. Nature Reviews Neuroscience, 1, 216–219.10.1038/35044580
  • Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 5–22). New York, NY: Plenum.10.1007/978-1-4615-4813-3
  • Niedderer, H., Budde, M., Givry, D., Psillos, D., & Tiberghien, A. (2007). Learning process studies. In R. Pintó & D. Couso (Eds.), Contributions from science education research (pp. 159–171). Dordrecht: Springer.10.1007/978-1-4020-5032-9
  • Novak, J. D., & Musonda, D. (1991). A twelve-year longitudinal study of science concept learning. American Educational Research Journal, 28, 117–153.10.3102/00028312028001117
  • Nussbaum, J. (1989). Classroom conceptual change: Philosophical perspectives. International Journal of Science Education, 11, 530–540.10.1080/0950069890110505
  • Nuthall, G. (1999). The way students learn: Acquiring knowledge from an integrated science and social studies unit. The Elementary School Journal, 99, 303–341.10.1086/461928
  • Nuthall, G., & Alton-Lee, A. (1993). Predicting learning from student experience of teaching: A theory of student knowledge construction in classrooms. American Educational Research Journal, 30, 799–840.10.3102/00028312030004799
  • O’Brien, G., & Opie, J. (1998). The disunity of consciousness. Australasian Journal of Philosophy, 76, 378–395.10.1080/00048409812348511
  • Onwuegbuzie, A. J., & Leech, N. L. (2007). Validity and qualitative research: An oxymoron? Quality & Quantity, 41, 233–249.10.1007/s11135-006-9000-3
  • Opfer, J. E., & Siegler, R. S. (2004). Revisiting preschoolers’ living things concept: A microgenetic analysis of conceptual change in basic biology. Cognitive Psychology, 49, 301–332.10.1016/j.cogpsych.2004.01.002
  • Özdemir, G., & Clark, D. B. (2007). An overview of conceptual change theories. Eurasia Journal of Mathematics, Science & Technology Education, 3, 336–351.
  • Parnafes, O. (2007). What does fast mean? Understanding the physical world through representations. The Journal of the Learning Sciences, 16, 415–450.10.1080/10508400701413443
  • Parnafes, O. (2010). When simple harmonic oscillation is not that simple: The complexity of students’ sense making. The Journal of Science Education and Technology, 19, 565–579.10.1007/s10956-010-9224-9
  • Parnafes, O., & diSessa, A. A. (2013). Microgenetic learning analysis: A methodology for studying knowledge in transition. Human Development, 56, 5–37.10.1159/000342945
  • Partridge, R. B. (2007). 3K: The cosmic microwave background radiation. Cambridge: Cambridge University Press.
  • Pata, K., & Sarapuu, T. (2006). A comparison of reasoning processes in a collaborative modelling environment: Learning about genetics problems using virtual chat. International Journal of Science Education, 28, 1347–1368.10.1080/09500690500438670
  • Pearsall, N. R., Skipper, J., & Mintzes, J. (1997). Knowledge restructuring in the life sciences: A longitudinal study of conceptual change in biology. Science Education, 81, 193–215.10.1002/(ISSN)1098-237X
  • Petri, J., & Niedderer, H. (1998). A learning pathway in high-school level quantum atomic physics. International Journal of Science Education, 20, 1075–1088.10.1080/0950069980200905
  • Philips, S., & Tolmie, A. (2007). Children’s performance on and understanding of the balance scale problem: The effects of parental support. Infant and Child Development, 16, 95–117.10.1002/(ISSN)1522-7219
  • Piaget, J. (1970). The principle of genetic epistemology. (W. Mays, Trans.). London: Routledge & Kegan Paul.
  • Posner, G., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211–227.10.1002/(ISSN)1098-237X
  • Pressley, M. (1992). How not to study strategy discovery. American Psychologist, 47, 1240–1241.10.1037/0003-066X.47.10.1240
  • Pressley, M., Forrest-Pressley, D. L., Elliott-Faust, D., & Miller, G. (1985). Children’s use of cognitive strategies, how to teach strategies, and what to do if they can’t be taught. In M. Pressley & C. J. Brainerd (Eds.), Cognitive learning and memory in children (pp. 1–47). New York, NY: Springer-Verlag.10.1007/978-1-4613-9544-7
  • Robinson, B. F., & Mervis, C. B. (1998). Disentangling early language development: Modeling lexical and grammatical acquisition using and extension of case-study methodology. Developmental Psychology, 34, 363–375.10.1037/0012-1649.34.2.363
  • Rosenthal, V. (2004). Microgenesis, immediate experience and visual processes in reading. In A. Carsetti (Ed.), Seeing, thinking and knowing: Meaning and self-organisation in visual cognition and thought (pp. 221–243). Dordrecht: Kluwer Academic.10.1007/1-4020-2081-3
  • Roth, W. M. (2014). Learning in the discovery sciences: The History of a “Radical” conceptual change, or the scientific revolution that was not. Journal of the Learning Sciences, 23, 177–215.
  • Roth, W.-M., & Welzel, M. (2001). From activity to gestures and scientific language. Journal of Research in Science Teaching, 38, 103–136.10.1002/1098-2736(200101)38:1<>1.0.CO;2-F
  • Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition, Vol. 1: Foundations. Cambridge, MA: MIT Press.
  • Rusanen, A-M., & Lappi, O. (2013). What, when and how do the models of conceptual change explain. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th annual conference of the cognitive science society (pp. 3331–3336). Austin, TX: Cognitive Science Society.
  • Sander, F. (1930). Structures, totality of experience, and gestalt. In C. Murchinson (Ed.), Psychologies of 1930: The international university series in psychology (pp. 188–204). Worcester, MA: Clark University Press.10.1037/11017-000
  • Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32, 102–119.10.1037/0012-1649.32.1.102
  • Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the IRE, 37, 10–21.10.1109/JRPROC.1949.232969
  • Shayer, M., & Adey, P. S. (1993). Accelerating the development of formal thinking in middle and high school students IV: Three years after a two-year intervention. Journal of Research in Science Teaching, 30, 351–366.10.1002/(ISSN)1098-2736
  • Shenton, A. K. (2004). Strategies for ensuring trustworthiness in qualitative research projects. Education for Information, 22, 63–75.
  • Shuell, T. J. (1990). Phases of meaningful learning. Review of Educational Research, 60, 531–547.10.3102/00346543060004531
  • Siegler, R. S. (1995). How does change occur: A microgenetic study of number conservation. Cognitive Psychology, 28, 225–273.10.1006/cogp.1995.1006
  • Siegler, R. S. (2006). Microgenetic analyses of learning. In D. Kuhn & R. S. Siegler (Eds.), Handbook of child psychology. Volume 2. Cognition, perception, and language (pp. 464–510). Hoboken, NJ: Wiley.
  • Siegler, R. S., & Chen, Z. (1998). Developmental differences in rule learning: A microgenetic analysis. Cognitive Psychology, 36, 273–310.10.1006/cogp.1998.0686
  • Siegler, R. S., & Crowley, K. (1991). The microgenetic method: A direct means for studying cognitive development. American Psychologist, 46, 606–620.10.1037/0003-066X.46.6.606
  • Siegler, R. S., & Jenkins, E. (1989). How children discover new strategies. Hillsdale, NJ: Erlbaum.
  • Silver, N. (2012). The signal and the noise: Why so many predictions fail-but some don’t. New York, NY: Penguin.
  • Singley, M., & Anderson, J. (1989). The study of transfer. In M. K. Singley & J. R. Anderson (Eds.), The Transfer of Cognitive Skill (pp. 1–41). Cambridge MA: Harvard University Press.
  • Smith, S. M. (1995). Getting into and out of mental ruts: A theory of fixation, incubation, and insight. In R. J. Sternberg & J. E. Davidson (Eds.), The Nature of Insight (pp. 229–251). Cambridge, MA: MIT Press.
  • Smith, J. P., diSessa, A. A., & Roschelle, J. (1993). Misconceptions reconceived: A constructivist analysis of knowledge in transition. The Journal of the Learning Sciences, 3, 115–163.
  • Smith, L. B., & Thelen, E. (2003). Development as a dynamic system. Trends in Cognitive Sciences, 7, 343–348.10.1016/S1364-6613(03)00156-6
  • Soong, B. (2008). Learning through computers: Uncovering students’ thought processes while solving physics problems. Australasian Journal of Educational Technology, 24, 592–610.
  • Srivastava, A., & Ramadas, J. (2013). Analogy and gesture for mental visualization of DNA structure. In D. F. Treagust & C. Y. Tsui (Eds.), Multiple representations in biological education (pp. 311–329). Dordrecht: Springer.10.1007/978-94-007-4192-8
  • Taber, K. S. (1995). Development of student understanding: A case study of stability and lability in cognitive structure. Research in Science & Technological Education, 13, 89–99.10.1080/0263514950130108
  • Taber, K. S. (2000a). Case studies and generalizability: Grounded theory and research in science education. International Journal of Science Education, 22, 469–487.10.1080/095006900289732
  • Taber, K. S. (2000b). Multiple frameworks?: Evidence of manifold conceptions in individual cognitive structure. International Journal of Science Education, 22, 399–417.10.1080/095006900289813
  • Taber, K. S. (2001). Shifting sands: A case study of conceptual development as competition between alternative conceptions. International Journal of Science Education, 23, 731–753.10.1080/09500690010006572
  • Taber, K. S. (2008a). Conceptual resources for learning science: Issues of transience and grain-size in cognition and cognitive structure. International Journal of Science Education, 30, 1027–1053.10.1080/09500690701485082
  • Taber, K. S. (2008b). Exploring conceptual integration in student thinking: Evidence from a case study. International Journal of Science Education, 30, 1915–1943.10.1080/09500690701589404
  • Taber, K. S. (2009). Progressing science education: Constructing the scientific research programme into the contingent nature of learning science. Dordrecht: Springer.10.1007/978-90-481-2431-2
  • Taber, K. S. (2013). Modeling learners and learning in science education. Dordrecht: Springer.10.1007/978-94-007-7648-7
  • Taber, K. S. (2014). The significance of implicit knowledge for learning and teaching chemistry. Chemistry Education Research and Practice, 15, 447–461.10.1039/C4RP00124A
  • Thornton, R. K. (1997). Conceptual dynamics: Following changing student views of force and motion. In American Institue of Physics Conference Proceedings (Vol. 399, pp. 241–266). College Park, MA
  • Treagust, D. F., & Duit, R. (2009). Multiple perspectives of conceptual change in science and the challenges ahead. Journal of Science and Mathematics Education in Southeast Asia, 32, 89–104.
  • Van Der Steen, S., Steenbeek, H., Van Dijk, M., & Van Geert, P. (2014). A process approach to children’s understanding of scientific concepts: A longitudinal case study. Learning and Individual Differences, 30, 84–91.10.1016/j.lindif.2013.12.004
  • Veal, W. R. (2004). Beliefs and knowledge in chemistry teacher development. International Journal of Science Education, 26, 329–351.10.1080/0950069032000097389
  • Vosniadou, S. (2008a). Conceptual change in learning and instruction: The framework theory approach. In S. Vosniadou (Ed.), International handbook of research on conceptual change (1st ed.), (pp. 11–30). New York, NY: Routledge.
  • Vosniadou, S. (2008b). Conceptual change research: An introduction. In S. Vosniadou (Ed.), International Handbook of research on conceptual change (1st ed.), pp. xiii–xxviii). New York, NY: Routledge.
  • Vygotsky, L. (1978). Mind in society: The development of higher mental processes Cambridge, MA: (M. Cole, Trans.). Cambridge, MA: Harvard University Press.
  • Werner, H. (1956). Microgenesis and aphasia. The Journal of Abnormal and Social Psychology, 52, 347–353.10.1037/h0048896
  • Wertsch, J. (1985). Vygotsky and the social formation of mind. Cambridge MA: Harvard University Press.
  • Wertsch, J. V. (1991). The problem of meaning in a sociocultural approach to mind. In A. McKeough & J. L. Lupart (Eds.), Toward the practice of theory-based instruction (pp. 31–49). Hillsdale, N.J.: Lawrence Erlbaum Associates.
  • West, L. H. T., & Pines, A. L. (1985). Introduction. In L. H. T. West & A. L. Pines (Eds.), Cognitive structure and conceptual change (pp. 1–7). London: Academic Press.
  • White, R. T. (1985). Interview protocols and dimensions of cognitive structure. In L. H. T. West & A. L. Pines (Eds.), Cognitive structure and conceptual change (pp. 51–59). London: Academic Press.
  • White, R. T., & Arzi, H. J. (2005). Longitudinal studies: Designs, validity, practicality, and value. Research in Science Education, 35, 137–149.10.1007/s11165-004-3437-y
  • Wiser, M., & Amin, T. (2001). Is heat hot? Inducing conceptual change by integrating everyday and scientific perspectives on thermal phenomena. Learning and Instruction, 11, 331–355.10.1016/S0959-4752(00)00036-0
  • Yin, R. K. (1981). The case study crisis: Some answers. Administrative Science Quarterly, 26, 58–65.10.2307/2392599
  • Yin, R. K. (2009). Case study research: Design and methods. Thousand Oaks, CA: Sage.
  • Zohar, A. (1995). Reasoning about interactions between variables. Journal of Research in Science Teaching, 32, 1039–1063.10.1002/(ISSN)1098-2736

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.