2,022
Views
28
CrossRef citations to date
0
Altmetric
Articles

Towards a framework for effective instructional explanations in science teaching

ORCID Icon

References

  • *Abrahams, I., & Millar, R. (2008). Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), 1945–1969.
  • Acuña, S., García-Rodicio, H., & Sánchez, E. (2011). Fostering active processing of instructional explanations of learners with high and low prior knowledge. European Journal of Psychology of Education, 26, 435–452.
  • Altmann, A., & Nückles, M. (2017). Empirische Studie zu Qualitätsindikatoren für den diagnostischen Prozess [Empirical studies on quality criteria for a diagnostic process]. In A. Südkamp & A.-K. Praetorius (Eds.), Diagnostische Kompetenz von Lehrkräften: Theoretische und methodische Weiterentwicklungen (pp. 134–141). Münster: Waxmann.
  • Alty, J.L., & Coombs, M.J. (1981). Communicating with university computer users: A case study. In M.J. Coombs & J.L. Alty (Eds.), Computing skills and the user interface (pp. 7–71). London, UK: Academic Press.
  • Anderson, J.R., Corbett, A.T., Koedinger, K.R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The Journal of the Learning Sciences, 4, 67–207.
  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., … Tsai, Y.M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180.
  • *Belova, N., Rundgren, S., & Eilks, I. (2015). Advertising and science education: A multi-perspective review of the literature. Studies in Science Education, 51(2), 169–200.
  • *Berger, R., & Hänze, M. (2015). Impact of expert teaching quality on novice academic performance in the jigsaw cooperative learning method. International Journal of Science Education. 37(2), 294–320.
  • Berghmans, I., Michiels, L., Salmon, S., Dochy, F., & Struyven, K. (2014). Directive versus facilitative peer tutoring? A view on students’ appraisal, reported learning gains and experiences within two differently-tutored learning environments. Learning Environments Research,17, 437–459.
  • *Berland, L.K., & Reiser, B.J. (2008). Making sense of argumentation and explanation. Science Education 93, 26–55.
  • *Berland, L.K., & McNeill, K.L. (2012). For whom is argument and explanation a necessary distinction? A response to Osborne and Patterson. Science Education, 96(5), 808–813.
  • Berthold, K. (2012). Explanatory support for learning. In N. Seel (Ed.), Encyclopedia of the sciences of learning (pp. 1241–1244). New York, NY: Springer.
  • Berthold, K., & Renkl, A. (2010). How to foster active processing of explanations in instructional communication. Educational Psychology Review, 22, 25–40.
  • Berthold, K., Röder, H., Knörzer, D., Kessler, W., & Renkl, A. (2011). The double-edged effects of explanation prompts. Computers in Human Behavior, 27, 69–75.
  • Black, J.B., Carroll, J.M., & McGuigan, S.M. (1987). What kind of minimal instruction is the best? In J.M. Carroll & P.P. Tanner (Eds.), Proceedings of CHI+Gi ́87 (pp. 159–162). New York, human factors in computing systems and graphics inferfaceNY: ACM.
  • *Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science Education 95(4), 639–669.
  • *Brigandt, I. (2016). Why the difference between explanation and argument matters to science education. Science & Education, 25(3), 251–275.
  • Brophy, J. (2000). Teaching. Brussels, Belgium: UNESCO International Academy of Education (IAE).
  • *Cabello, V. (2013). Developing skills to explain scientific concepts during initial teacher education: The role of peer assessment. Dundee, UK: University of Dundee.
  • Carroll, J. (1963). A model of school learning. Teachers College Record, 64(8), 723–733.
  • Carroll, J. (1990). The Nurnberg Funnel. Designing minimalist instruction for practical computer skill. Cambridge: MIT Press.
  • *Champagne, A.B., Klopfer, L.E., & Gunstone, R.F. (1982). Cognitive research and the design of science instruction. Educational Psychologist, 17, 31–53.
  • *Cauet, E., Liepertz, S., Kirschner, S., Borowski, A., & Fischer, H.E. (2015). Does it matter what we measure? Domain-specific professional knowledge of physics teachers. Revue Suisse des sciences de l’éducation, 37(3), 462–479.
  • Charalambous, C.Y., Hill, H.C., & Ball, D.L. (2011). Prospective teachers’ learning to provide instructional explanations: How does it look and what might it take? Journal of Mathematics Teacher Education, 14(6), 441–463.
  • Chi, M.T.H. (1996). Constructing self-explanations and scaffolded explanations in tutoring. Applied Cognitive Psychology, 10, 33–49.
  • Chi, M.T.H. (2000). Self-explaining expository texts: The dual processes of generating inferences and repairing mental models. In R. Glaser (Ed.), Advances in instructional psychology (pp. 161–238). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Chi, M.T.H. (2009). Active-constructive-interactive: A conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1(1), 73–105.
  • Chi, M.T.H., Bassok, M., Lewis, M.W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145–182.
  • Chi, M.T.H., de Leeuw, N., Chiu, M.H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439–477.
  • Chi, M.T.H., Siler, S.A., & Jeong, H. (2004). Can tutors monitor students understanding accurately? Cognition and Instruction, 22, 363–387.
  • Chi, M.T.H., Siler, S.A., Jeong, H., Yamauchi, T., & Hausmann, R.G. (2001). Learning from human tutoring. Cognitive Science, 25, 471–533.
  • *Clement, J. (1993). Using bridging analogies and anchoring instructions to deal with students’ Preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241–1257.
  • Connell, L., & Keane, M.T. (2004). What plausibility affects plausibility? Concept-coherence and distributional word coherence as factors influencing plausibility judgments. Memory and Cognition, 32, 185–197.
  • *Dagher, Z., & Cossman, G. (1992). Verbal explanations given by science teachers: Their nature and implications. Journal of Research in Science Teaching, 29, 361–374.
  • *Diakidoy, I.N., Kendeou, P., & Ioannides, C. (2003). Reading about energy: The effects of text structure in science learning and conceptual change. Contemporary Educational Psychology, 28, 335–356.
  • Dorfner, T., Förtsch, C., & Neuhaus, B. (2017). Die methodische und inhaltliche Ausrichtung quantitativer Videostudien zur Unterrichtsqualität im mathematisch-naturwissenschaftlichen Unterricht [The Methodical and Content-related Orientation of Quantitative Video Studies on Instructional Quality in Mathematics and Science Education]. Zeitschrift für Didaktik der Naturwissenschaften. doi: 10.1007/s40573-017-0058-3.
  • Duffy, G., Roehler, L., Meloth, M., & Vavrus, L. (1986). Conceptualizing instructional explanation. Teaching and Teacher Education, 2, 197–214.
  • *Duit, R., & Treagust, D.F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688.
  • *Duit, R., & Pfundt, H. (2009). Bibliography - STCSE students‘ and teachers‘ Conceptions and science education. Kiel, Germany: IPN
  • *Duit, R., Gropengießer, H., Kattman, U., Komorek, M., & Parchmann, I. (2012). The model of educational reconstruction – A framework for omproving teaching and learning science. In D. Jorde & J. Dillon (Eds.), Science education research and practice in europe: retrospective and prospective (pp. 13–37). Dordrecht, The Netherlands: Springer.
  • Dutke, S., & Reimer, T. (2000). Evaluation of two types of online help for application software. Journal of Computer-Assisted Learning, 16, 307–315.
  • Einsiedler, W., & Hardy, I. (2010). Kognitive Strukturierung im Unterricht: Einführung und Begriffsklärungen [Cognitive Structuring in Teaching: Instrudocution and Clarification of the concept]. Unterrichtswissenschaft, 38. 94–209.
  • *Fechner (2009). Effects of context-oriented learning on student interest and achievement in chemistry education. Berlin, Germany: Logos.
  • *Ford, D. (2009). Promises and challenges for the use of adapted primary literature in science curricula: Commentary. Research in Science Education 39. 385–390
  • *Fischer, H., Neumann, K., Labudde, P., & Viiri, J. (2014). (Eds.), Quality of instruction in physics. Comparing Finland, Germany and Switzerland. Münster, Germany: Waxmann.
  • Gage, N. (1968). The microcriterion of effectiveness in explaining. In N. Gage (Ed.), Explorations of the teacher’s effectiveness in explaining, Technical Report No. 4, (pp.1–8). Stanford, CA: Stanford Center for Research and Developement in Teaching.
  • García-Sanchez, J.-N., & Fidalgo-Redondo, R. (2006). Effects of two types of self-regulatory instruction programs on students with learning disabilities in writing products, processes, and self-efficacy. Learning Disability Quarterly 29, 181–211.
  • *Hänze, M., & Berger, R. (2007). Cooperative learning, motivational effects and student characteristics: An experimental study comparing cooperative learning and direct instruction in 12th grade physics classes. Learning and Instruction 17, 29–41.
  • *Geelan, D. (2012). Teacher explanations. In B. Fraser, K. Tobin, & C. McRobbie (Eds.), Second international handbook of science education (pp. 987–999). Dordrecht, The Netherlands: Springer.
  • *Geelan, D. (2013). Teacher explanation of physics concepts: A video study. Research in Science Education 43, 1751–1762.
  • Hattie, J. (2009). Visible Learning. London, UK: Routledge.
  • Hempel, C., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15(2), 135–175.
  • Herppich, S., Wittwer, J., Nückles, M., & Renkl, A. (2014). Addressing knowledge deficits in tutoring and the role of teaching experience: Benefits for learning and summative assessment. Journal of Educational Psychology, 106(4), 934–945.
  • *Hiebert, J., Gallimore, R., Garnier, H., Givvin, K.B., Hollingsworth, H., & Jacobs, J. (2003). Teaching mathematics in seven countries: Results from the TIMSS 1999 video study. Washington: U.S. Department of Education, National Center for Education Statistics.
  • Hmelo-Silver, C.E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16, 235–266.
  • *Hofstein, A., & Lunetta, V. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28–54.
  • *Hofstein, A., & Kind, P.M. (2012). Learning in and from science laboratories. In B. Fraser, K. Tobin, & C. McRobbie ( Hrsg.): Second international handbook of science education (pp.189–207). Dordrecht, The Netherlands: Springer.
  • Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509–539.
  • Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23–31.
  • Kalyuga, S., & Renkl, A. (2010). Expertise reversal effect and its instructional implications: Introduction to the special issue. Instructional Science, 38, 209–215.
  • Kamalski, J., Sanders, T., & Lentz, L. (2008). Coherence marking, prior knowledge and comprehension of informative and persuasive text: Sorting things out. Discourse Processes, 45, 323–345.
  • *Kendeou, P., & van Den Broek, P. (2007). The effects of prior knowledge and text structure on comprehension processes during reading of scientific texts. Memory & Cognition, 35, 1567–1577.
  • King, A. (1999). Discourse patterns for mediating peer learning. In A. O‘Donnell & A. King (Eds.), Cognitive perspectives on peer learning (pp. 3–37). Mahwah, NJ: Erlbaum.
  • Kitcher, P. (1981). Explanatory Unification. Philosophy of Science, 48(4), 507–531.
  • Klieme, E., Schümer, G., & Knoll, S. (2001). Mathematikunterricht in der Sekundarstufe I: „Aufgabenkultur’ und Unterrichtsgestaltung [Mathematic instruction in lower secondary: ‘culture of learning tasks’ and quality of instruction]. In Bundesministerium für Bildung und Forschung (BMBF) ( Hrsg.), TIMSS – Impulse für Schule und Unterricht. Forschungsbefunde, Reforminitiativen, Praxisberichte und Video-Dokumente (pp. 43–57). Bonn: BMBF.
  • Korthagen, F.A.J., & Kessels, J.P.A.M. (1999). Linking theory and practice: Changing the pedagogy of teacher education. Educational Researcher, 28(4), 4–17.
  • *Kulgemeyer, C., & Schecker, H. (2009). Kommunikationskompetenz in der Physik: Zur Entwicklung eines domänenspezifischen Kompetenzbegriffs. Zeitschrift für Didaktik der Naturwissenschaften 15, 131–153
  • *Kulgemeyer, C., & Schecker, H. (2013). Students explaining science – Assessment of science communication competence. Research in Science Education, 43, 2235–2256.
  • *Kulgemeyer, C., & Tomczyszyn, E. (2015). Physik erklären – Messung der Erklärensfähigkeit angehender Physiklehrkräfte in einer simulierten Unterrichtssituation [Explaining physics – measuring teacher trainees’ Explaining skills using a simulated teaching setting]. Zeitschrift für Didaktik der Naturwissenschaften, 21(1), 111–126.
  • *Kulgemeyer, C., & Peters, C. (2016). Exploring the explaining quality of physics online explanatory videos. European Journal of Physics, 37(6), 1–14.
  • *Kulgemeyer, C. (2018). A Framework of effective science explanation videos informed by criteria for instructional explanations. Research in Science Education, 1–22. DOI: 10.1007/s11165-018-9787-7
  • *Kulgemeyer, C., & Riese, J. (2018). From professional knowledge to professional performance: The impact of CK and PCK on teaching quality in explaining situations. Journal of Research in Science Teaching, 1–26. DOI: 10.1002/tea.21457.
  • Lehman, S., & Schraw, G. (2002). Effects of coherence and relevance on shallow and deep text processing. Journal of Educational Psychology, 94, 738–750.
  • Leinhardt, G., & Steele, M.D. (2005). Seeing the complexity of standing to the side: Instructional dialogues. Cognition and Instruction, 23, 87–163.
  • Martin, J. (1970). Explaining, understanding, and teaching. New York, NY: McGraw-Hill.
  • Mayer, R.E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38, 43–52.
  • Mayer, R.E., Moreno, R., Boire, M., & Vagge, S. (1999), Maximizing constructivist learning from multimedia communications by minimizing cognitive load, Journal of Educational Psychology, 91, 638–643.
  • McNamara, D.S., & Kintsch, W. (1996). Learning from texts: Effects of prior knowledge and text coherence. Discourse Processes, 22, 247–288.
  • *Merzyn, G. (2005). Junge Lehrer im Referendariat [Young teachers in teacher training]. Der mathematische und naturwissenschaftliche Unterricht, 58(1), 4–7.
  • *McNeill, K. (2009). Teachers’ use of curriculum to support students in writing scientific arguments to explain phenomena. Science Education, 93(2), 233–268.
  • Nathan, M., & Koedinger, K. (2000). An investigation of teachers’s beliefs of students’ algebra development. Cognition & Instruction, 40, 209–237.
  • Nathan, M., & Petrosino, A. (2003). Expert blind spot among preservice teachers. American Educational Research Journal, 40(4), 905–928.
  • Nickerson, R.S. (1999). How we know – And sometimes misjudge – What others know: Imputing one’s own knowledge to others. Psychological Bulletin, 125, 737–759.
  • *Norris, S.P., Guilbert, S.M., Smith, M.L., Hakimelahi, S., & Phillips, L.M. (2005). A theoretical framework for narrative explanation in science. Science Education, 89(4), 535–563.
  • Nückles, M., Wittwer, J., & Renkl, A. (2005). Information about a layer- son’s knowledge supports experts in giving effective and efficient online advice to laypersons. Journal of Experimental Psychology: Applied, 11, 219–236.
  • O’Neill, G.P. (1988). Teaching effectiveness: A review of the research. Canadian Journal of Education, 13(1), 162–185.
  • *Ogborn, J., Kress, G., Martins, I., & McGillicuddy, K. (1996). Explaining science in the classroom. Buckingham, UK: Open University Press.
  • *Phillips, L., & Norris, S. (2009). Bridging the gap between the language of science and the language of school science through the use of adapted primary literature. Research in Science Education 39. 313–319
  • *Osborne, J.F., & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95(4), 627–638.
  • Pianta, R.C., Hamre, B.K., & Mintz, S. (2012). Classroom assessment scoring system: Secondary manual. Charlottesville, VA: Teachstone.
  • *Posner, G.J., Strike, K.A., Hewson, P.W., & Gertzog, W.A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211–227.
  • References (Asterisk: Articles from science education research)
  • Renkl, A. (2002). Worked-out examples: Instructional explanations support learning by self-explanations. Learning and Instruction, 12, 529–556.
  • Renkl, A., Wittwer, J., Große, C., Hauser, S., Hilbert, T., Nückles, M., & Schworm, S. (2006). Instruktionale Erklärungen beim Erwerb kognitiver Fertigkeiten: Sechs Thesen zu einer oft vergeblichen Bemühung [Instructional explanations and the achievement of cognitive abilities: Six hypotheses on a failing attempt]. In I. Hosenfeld (Ed.): Schulische Leistung. Grundlagen, Bedingungen, Perspektiven (205–223). Münster, Germany: Waxmann.
  • Rescher, N. (1962). The stochastic revolution and the nature of scientific explanation. Synthese 14, 200–215.
  • Roelle, J., Berthold, K., & Renkl, A. (2014). Two instructional aids to optimise processing and learning from instructional explanations. Instructional Science, 42, 207–228.
  • Ruben, D. (1990). Explaining Explanation. London, UK: Routledge.
  • Sánchez, E., García Rodicio, H., & Acuña, S.R. (2009). Are instructional explanations more effective in the context of an impasse? Instructional Science, 37, 537–563.
  • *Scott, P., Asoko, H., & Driver, R. (1992): Teaching for conceptual change - A review of strategies. In R. Duit, F. Goldberg, & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 310–329). Kiel: IPN.
  • Seidel, T., Blomberg, G., & Renkl, A. (2013). Instructional strategies for using video in teacher education. Teaching and Teacher Education, 34, 56–65.
  • Seidel, T., & Shavelson, R.J. (2007). Teaching effectiveness research in the past decade: The role of theory and research design in disentangling meta-analysis results. Review of Educational Research, 77(4), 454–499
  • *Sevian, H., & Gonsalves, L. (2008). Analysing how scientists explain their research: A rubric for measuring the effectiveness of scientific explanations. International Journal of Science Education, 30(11), S441–S1467.
  • Sweller, J., & Chandler, P. (1991). Evidence for cognitive load theory. Cognition and Instruction, 8, 351–362.
  • *Talanquer, V. (2007). Explanations and teleology in chemistry education. International Journal of Science Education, 29(7), 853–870.
  • Tomlinson, P.D., & Hunt, D.E. (1971). Differential effects of rule-example order as a function of learner conceptual level. Canadian Journal of Behavioural Science, 3(3), 237–245.
  • *Treagust, D., & Harrison, A. (1999). The genesis of effective science explanations for the classroom. In J. Loughran (Ed.): Researching teaching: Methodologies and practices for understanding pedagogy (pp. 28–43). Abingdon, VA: Routledge.
  • *Velentzas, A., & Halkia, K. (2018). Scientific explanations in Greek upper secondary physics textbooks. International Journal of Science Education, 40(1), 90–108.
  • *Trommler, F., Gresch, H., & Hammann, M. (2018). Students’ reasons for preferring teleological explanations. International Journal of Science Education, 40(2), 59–187.
  • Webb, N, & Farivar, S. (1999). Developing productive group interaction in middle school mathematics. In (Eds.), (pp. 117-149).London: Lawrence Erlbaum.
  • Webb, N.M. (1992). Testing a theoretical model of student interaction and learning in small groups. In R. Hertz-Lazarowitz & N. Miller (Eds.), Interaction in cooperative groups: The theoretical anatomy of group learning (pp. 102–119). New York, NY: Cambridge University Press.
  • Webb, N.M., & Palinscar, A.S. (1996). Group processes in the classroom. In D.C. Berliner & R.C. Calfee (Eds.), Handbook of educational psychology (pp. 841–873). New York: Simon & Schuster Macmillan.
  • Webb, N.M., Ing, M., Kersting, N., & Nemer, K.M. (2006). Help seeking in cooperative learning groups. In S.A. Karabenick & R.S. Newman (Eds.), Help seeking in academic settings: Goals, groups, and contexts (pp. 45–88). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Webb, N.M., Troper, J.D., & Fall, R. (1995). Constructive activity and learning in collaborative small groups. Journal of Educational Psychology, 87, 406–423.
  • Weiss, I.R., & Parsley, J.D. (2004). What is high-quality instruction? Educational Leadership, 65(1), 24–28.
  • *Wilson, H., & Mant, J. (2011a). What makes an exemplary teacher of science? The pupils’ perspective. School Science Review, 93(342), 121–125.
  • *Wilson, H., & Mant, J. (2011b). What makes an exemplary teacher of science? The teachers’ perspective. School Science Review, 93(342), 115–119.
  • Wittwer, J., & Ihme, N. (2014). Reading skill moderates the impact of semantic similarity and causal specificity on the coherence of explanations. Discourse Processes, 51, 143–166.
  • Wittwer, J., Nückles, M., Landmann, N., & Renkl, A. (2010). Can tutors be supported in giving effective explanations? Journal of Educational Psychology, 102, 74–89.
  • Wittwer, J., & Renkl, A. (2008). Why instructional explanations often do not work: A framework for understanding the effectiveness of instructional explanations. Educational Psychologist, 43(1), 49–64.
  • *Yip, C. (2009) Causal and teleological explanations in biology. Journal of Biological Education, 43 (4), 149–151.
  • *Yao, J., & Guo, Y. (2017). Validity evidence for a learning progression of scientific explanation. Journal of Research in Science Teaching, 55(2), 299–317.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.