1,262
Views
11
CrossRef citations to date
0
Altmetric
Review Article

Response of science learners to contradicting information: a review of research

ORCID Icon
Pages 67-108 | Received 05 May 2021, Accepted 22 Oct 2021, Published online: 17 Nov 2021

References

  • Abelson, R. P. (1959). Modes of resolution of belief dilemmas. Journal of Conflict Resolution, 3(4), 343–352. https://doi.org/10.1177/002200275900300403
  • Achor, E. E., & Abuh, P. Y. (2020). Fostering students’ academic performance in physics using cognitive conflict instructional strategy and conceptual change pedagogy. International Journal of Education and Learning, 2(1), 42–57. https://doi.org/10.31763/ijele.v2i1.118
  • Akmam, A., Anshari, R., Amir, H., Jalinus, N., & Amran, A. (2018). Influence of learning strategy of cognitive conflict on student misconception in computational physics course. IOP Conference Series: Materials Science and Engineering, 335 (1) , 012074. https://doi.org/10.1088/1757-899x/335/1/012074
  • Allaire-Duquette, G., Bélanger, M., Grabner, R. H., Koschutnig, K., & Masson, S. (2019). Individual differences in science competence among students are associated with ventrolateral prefrontal cortex activation. Journal of Neuroscience Research, 97(9), 1163–1178. https://doi.org/10.1002/jnr.24435
  • Allaire-Duquette, G., Brault Foisy, L. -M., Potvin, P., Riopel, M., Larose, M., & Masson, S. (2021). An fMRI study of scientists with a Ph.D. in physics confronted with naive ideas in science. Npj Science of Learning, 6(1), 11. https://doi.org/10.1038/s41539-021-00091-x
  • Anggoro, S., Widodo, A., Suhandi, A., & Treagust, D. F. (2019). Using a discrepant event to facilitate preservice elementary teachers’ conceptual change about force and motion. Eurasia Journal of Mathematics, Science and Technology Education, 15(8), em1737. https://doi.org/10.29333/ejmste/105275
  • Appleton, K. (1996). Students’ responses during discrepant event science lessons [Paper presentation]. The National Assication for Research in Science Teaching (NARST) Annual Conference, St-Louis.
  • Arslan, H. O., Cigdemoglu, C., & Modeley, C. (2012). A three-tier diagnostic test to assess pre-service teachers’ misconceptions about global warming, greenhouse effect, ozone layer depletion, and acid rain. International Journal of Science Education, 34(11), 1667–1686. https://doi.org/10.1080/09500693.2012.680618
  • Ausubel, D. P., Novak, J. D., & Hanesian, H. (1978). Educational psychology: A cognitive view. Holt, Rinehart, and Winston.
  • Baddock, M., & Bucat, R. (2008). Effectiveness of a classroom chemistry demonstration using the cognitive conflict strategy. International Journal of Science Education, 30(8), 1115–1128. https://doi.org/10.1080/09500690701528824
  • Baser, M. (2006). Fostering conceptual change by cognitive conflict instruction on students’ understanding of heat and temperature concepts. Eurasia Journal of Mathematics, Science and Technology Education, 2(2), 96–114. https://doi.org/10.12973/ejmste/75458
  • Bélanger, M. (2018). Representational pluralism [Paper presentation]. The Conjoint Delegation Conference at UQAM, Montréal, Canada.
  • Bendixen, L. D. (2016). Teaching for epistemic change in elementary classrooms. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 281–299). Routledge.
  • Brault Foisy, L. -M., Potvin, P., Riopel, M., & Masson, S. (2015). Is inhibition involved in overcoming a common physics misconception in mechanics? Trends in Neuroscience and Education, 4(1–2), 26–36. https://doi.org/10.1016/j.tine.2015.03.001
  • Brod, G., Breitwieser, J., Hasselhorn, M., & Bunge, S. A. (2020). Being proven wrong elicits learning in children – But only in those with higher executive function skills. Developmental Science, 23(3), e12916. https://doi.org/10.1111/desc.12916
  • Brod, G., Hasselhorn, M., & Bunge, S. A. (2018). When generating a prediction boosts learning: The element of surprise. Learning and Instruction, 55 (3) , 22–31. https://doi.org/10.1016/j.learninstruc.2018.01.013
  • Brown, D. E. (1993). Refocusing core intuitions: A concretizing role for analogy in conceptual change. Journal of Research in Science Teaching, 30(10), 1273–1290. https://doi.org/10.1002/tea.3660301009
  • Burbules, N. C., & Linn, M. C. (1988). Response to contradiction: Scientific reasoning during adolescence. Journal of Educational Psychology, 80(1), 67. https://doi.org/10.1037/0022-0663.80.1.67
  • Burton, R. A. (2008). On being certain: Believing you are right even when you’re not. St. Martin’s Press.
  • Caleon, I., & Subramanian, R. (2010). Development and application of a three‐tier diagnostic test to assess secondary students’ understanding of waves. International Journal of Science Education, 32(7), 939–961. https://doi.org/10.1080/09500690902890130
  • Chan, C., Burtis, J., & Bereiter, C. (1997). Knowledge building as a mediator of conflict in conceptual change. Cognition and Instruction, 15(1), 1–40. https://doi.org/10.1207/s1532690xci1501_1
  • Chang, H. (2014). Is water H2O? Evidence, realism and pluralism. Springer.
  • Chi, M. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 61–82). Routledge.
  • Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1–49. https://doi.org/10.3102/00346543063001001
  • Chinn, C. A., & Brewer, W. F. (1998). An empirical test of a taxonomy or responses to anomalous data in sciene. Journal of Research in Science Teaching, 35(6), 623–654. https://doi.org/10.1002/(SICI)1098-2736(199808)35:6<623::AID-TEA3>3.0.CO;2-O
  • Chinn, C. A., & Malhotra, B. A. (2002). Children’s responses to anomalous scientific data: How is conceptual change impeded? Journal of Educational Psychology, 94(2), 327. https://doi.org/10.1037/0022-0663.94.2.327
  • Chinn, C. A., & Samarapungavan, A. L. A. (2009). Conceptual change—Multiple routes, multiple mechanisms: A commentary on Ohlsson (2009). Educational Psychologist, 44(1), 48–57. https://doi.org/10.1080/00461520802616291
  • Clement, J. (1993). Using bridging analogies and anchoring intuitions to deal with students’ preconceptions in physics. Journal of Research in Science Teaching, 30(10), 1241–1257. https://doi.org/10.1002/tea.3660301007
  • Cordova, J. R., Sinatra, G. M., Jones, S. H., Taasoobshirazi, G., & Lombardi, D. (2014). Confidence in prior knowledge, self-efficacy, interest and prior knowledge: Influences on conceptual change. Contemporary Educational Psychology, 39(2), 164–174. https://doi.org/10.1016/j.cedpsych.2014.03.0060361-476X/
  • Coştu, B., Ayas, A., & Niaz, M. (2010). Promoting conceptual change in first year students’ understanding of evaporation. Chemistry Education Research and Practice, 11(1), 5–16. https://doi.org/10.1039/C001041N
  • Crujeiras-Pérez, B., & Jiménez-Aleixandre, M. P. (2019). Students’ progression in monitoring anomalous results obtained in inquiry-based laboratory tasks. Research in Science Education, 49(1), 243–264. https://doi.org/10.1007/s11165-017-9641-3
  • Darden, L. (2006). Reasoning in biological discoveries: Essays on mechanisms, interfield relations, and anomaly resolution. Cambridge University Press.
  • Dawson, C., & Lyndon, H. (1997). Conceptual mediation: A new perspective on conceptual exchange. Research in Science Education, 27(2), 157–173. https://doi.org/10.1007/BF02461314
  • Dawson, C. (2014). Towards a conceptual profile: Rethinking conceptual mediation in the light of recent cognitive and neuroscientific findings. Research in Science Education, 44(3), 389–414. https://doi.org/10.1007/s11165-013-9388-4
  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2), 105–225. https://doi.org/10.1080/07370008.1985.9649008
  • diSessa, A. A. (2006). A history of conceptual change research: Threads and fault lines. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 265–281). Cambridge university press.
  • Dreyfus, A., Jungwirth, E., & Eliovitch, R. (1990). Applying the “cognitive conflict” strategy for conceptual change - Some applications, difficulties and problems. Science Education, 74(5), 555–569. https://doi.org/10.1002/sce.3730740506
  • Duit, R., & Treagust, D. (2003). Conceptual change - A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688. https://doi.org/10.1080/09500690305016
  • Elliot, A. J., & Devine, P. G. (1994). On the motivational nature of cognitive dissonance: Dissonance as psychological discomfort. Journal of Personality and Social Psychology, 67(3), 382. https://doi.org/10.1037/0022-3514.67.3.382
  • Fatni, M., Asrizal, A., & Reni, P. (2020). Meta-analysis of the effect of cognitive conflict on physics learning. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 6 (2) , . https://doi.org/10.21009/1.06213
  • Fensham, P. J., & Kass, H. (1988). Inconsistent or discrepant events in science instruction. Studies in Science Education, 15(1), 1–16. https://doi.org/10.1080/03057268808559946
  • Ferrero, M., Hardwicke, T. E., Konstantinidis, E., & Vadillo, M. A. (2020). The effectiveness of refutation texts to correct misconceptions among educators. Journal of Experimental Psychology. Applied, 26(3), 411–421. https://doi.org/10.1037/xap0000258
  • Festinger, L. (1957). A theory of cognitive dissonance. Stanford University Press.
  • Furberg, A., & Arnseth, H. C. (2009). Reconsidering conceptual change from a socio-cultural perspective: Analyzing students’ meaning making in genetics in collaborative learning activities. Cultural Studies of Science Education, 4(1), 157–191. https://doi.org/10.1007/s11422-008-9161-6
  • Ganea, P. A., Larsen, N. E., & Venkadasalam, V. P. (2020). The role of alternative theories and anomalous evidence in children’s scientific belief revision. Child Development, 92(3 1137–1153). https://doi.org/10.1111/cdev.13481
  • González‐Espada, W. J., Birriel, J., & Birriel, I. (2010). Discrepant events: A challenge to students’ intuition. The Physics Teacher, 48(8), 508–511. https://doi.org/10.1119/1.3502499
  • Greene, J. A., Sandoval, W. A., & Bråten, I. (2016a). Handbook of epistemic cognition. Routledge.
  • Greene, J. A., Sandoval, W. A., & Bråten, I. (2016b). An introduction to epistemic cognition. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 1–15). Routledge.
  • Gül, K. S., & Ateş, H. (2017). Science teachers’ perceptions toward discrepant events applied in science education [Paper presentation]. The Asia-Pacific Forum on Science Learning & Teaching Hong-Kong.
  • Ha, M., Haury, D. L., & Nehm, R. H. (2012). Feeling of certainty: Uncovering a missing link between knowledge and acceptance of evolution. Journal of Research in Science Teaching, 49(1), 95–121. https://doi.org/10.1002/tea.20449
  • Hadjiachilleos, S., Valanides, N., & Angeli, C. (2013). The impact of cognitive and affective aspects of cognitive conflict on learners’ conceptual change about floating and sinking. Research in Science & Technological Education, 31(2), 133–152. https://doi.org/10.1080/02635143.2013.811074
  • Hasan, S., Bagayoko, D., & Kelley, E. L. (1990). Misconceptions and the certainty of response index (CRI). Physics Education, 34(5), 294–299. https://doi.org/10.1088/0031-9120/34/5/304
  • Hatano, G., & Inagaki, K. (2003). When is conceptual change intended? A cognitive sociocultural view. In G. M. Sinatra & P. R. Pintrich (Eds.), Intentional conceptual change (pp. 407–425). Lawrence Erlbaum Associates.
  • Hemmerich, J. A., Van Voorhis, K., & Wiley, J. (2016). Anomalous evidence, confidence change, and theory change. Cognitive Science, 40(6), 1534–1560. https://doi.org/10.1111/cogs.12289
  • Hermann, P., & Gomez, L. M. (2009). Reconciling the cognitive, motivational, and social contexts of instruction. In S. Tobias & T. M. Duffy (Eds.), Constructivist instruction: Success or failure? (pp. 62–81). Routledge.
  • Howells, K. (2018 The future of education and skills: Education 2030 (OECD Education working paper)). .
  • Johansen, M. W., & Christiansen, F. V. (2020). Handling anomalous data in the lab: Students’ perspectives on deleting and discarding. Science and Engineering Ethics, 26(1), 1–22. https://doi.org/10.1007/s11948-019-00111-5
  • Kang, H., Scharmann, L. C., Kang, S., & Noh, T. (2010). Cognitive conflict and situational interest as factors influencing conceptual change. International Journal of Environmental and Science Education, 5(4), 483–485 doi:.
  • Kang, S., Scharmann, L. C., Noh, T., & Koh, H. (2005). The influence of students’ cognitive and motivational variables in respect of cognitive conflict and conceptual change. International Journal of Science Education, 27(9), 1037–1058. https://doi.org/10.1080/09500690500038553
  • Kang, S., Scharmann, L. C., & Noh, T. (2004). Reexamining the role of cognitive conflict in science concept learning. Research in Science Education, 34(1), 71–96. https://doi.org/10.1023/B:RISE.0000021001.77568.b3
  • Kang, S., Shin, S. -H., & Noh, T. -H. (2002). A study on elementary school students’ responses to anomalous data. Journal of the Korean Association for Science Education, 22(2), 252–260.
  • Kelly, G. J., & Green, J. (1998). The social nature of knowing: Toward a sociocultural perspective on conceptual change and knowledge construction. In B. Guzetti & C. Hynd (Eds.), Perspectives on conceptual change: Multiple ways to understanding, knowing and learning in a complex world (pp. 145–182). Lawrence Erlbaum associates.
  • Kendeou, P., Butterfuss, R., Kim, J., & Van Boekel, M. (2019). Knowledge revision through the lenses of the three-pronged approach. Memory & Cognition, 47(1), 33–46. https://doi.org/10.3758/s13421-018-0848-y
  • Kendeou, P., Walsh, E. K., Smith, E. R., & O’Brien, E. J. (2014). Knowledge revision processes in refutation texts. Discourse Processes, 51(5–6), 374–397. https://doi.org/10.1080/0163853X.2014.913961
  • Kienhues, D., Ferguson, L., & Stahl, E. (2016). Diverging information and epistemic change. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 318–330). Routledge.
  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86. https://doi.org/10.1207/s15326985ep4102_1
  • Kirschner, P. A. (2009). Epistemology or pedgogy, that is the question. In S. Tobias & T. M. Duffy (Eds.), Constructivist instruction: Success or failure? (pp. 144–157). Routledge.
  • Koumaras, P. (1996). Pupils’ conceptions as a factor for the development of experiments - The case of simple electricity. School & Science Review, 77(280), 97–101.
  • Kuhn, T. S. (1962). La structure des révolutions scientifiques [The structure of scientific revolutions]. Champs-Flammarion.
  • Lee, G., & Byun, T. (2012). An explanation for the difficulty of leading conceptual change using a counterintuitive demonstration: The relationship between cognitive conflict and responses. Research in Science Education, 42(5), 943–965. https://doi.org/10.1007/s11165-011-9234-5
  • Lee, G., & Kwon, J. (2001). What do we know about students’ cognitive conflict in science classroom: A theoretical model of cognitive conflict process [Paper presentation]. The Annual Meeting of the Association for the Education of Teachers in Science, Mesa, CA.
  • Lee, G., Kwon, J., Park, -S. -S., Kim, J. -W., Kwon, H. -G., & Park, H. -K. (2003). Development of an instrument for measuring cognitive conflict in secondary-level science class. Journal of Research in Science Teaching, 40(6), 585–603. https://doi.org/10.1002/tea.10099
  • Leo, E. L., & Galloway, D. (1996). Conceptual links between cognitive acceleration through science education and motivational style: A critique of Adey and Shayer. International Journal of Science Education, 18(1), 35–49. https://doi.org/10.1080/0950069960180103
  • Limón, M., & Carretero, M. (1997). Conceptual change and anomalous data: A case study in the domain of natural sciences. European Journal of Psychology of Education, 12(2), 213. https://doi.org/10.1007/BF03173085
  • Limón, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: A critical appraisal. Learning and Instruction, 11(4–5), 357–380. https://doi.org/10.1016/S0959-4752(00)00037-2
  • Lin, J. -Y. (2007). Responses to anomalous data obtained from repeatable experiments in the laboratory. Journal of Research in Science Teaching, 44(3), 506–528. https://doi.org/10.1002/tea.20125
  • Madu, B. C., & Orji, E. (2015). Effects of cognitive conflict instructional strategy on students’ conceptual change in temperature and heat. SAGE Open, 5(3), 3. https://doi.org/10.1177/2158244015594662
  • Mason, L. (2000). Role of anomalous data and epistemological beliefs in middle school students’ theory change about two controversial topics. European Journal of Psychology of Education, 15(3), 329–346. https://doi.org/10.1007/BF03173183
  • Mason, L. (2001a). Introduction to special issue on conceptual change. Learning and Instruction, 11(4), 259–263. https://doi.org/10.1016/S0959-4752(00)00032-3
  • Mason, L. (2001b). Responses to anomalous data on controversial topics and theory change. Learning and Instruction, 11(6), 453–483. https://doi.org/10.1016/S0959-4752(00)00042-6
  • Mason, L. (2007). Introduction: Bridging the cognitive and sociocultural approaches in research on conceptual change: Is it feasible? Educational Psychologist, 42(1), 1–7. https://doi.org/10.1080/00461520709336914
  • Masson, M. E. J., Bub, D. N., & Lalonde, C. E. (2011). Video-game training and naïve reasoning about object motion. Applied Cognitive Psychology, 25(1), 166–173. https://doi.org/10.1002/acp.1658
  • Masson, S., Potvin, P., Riopel, M., & Brault Foisy, L. -M. (2014). Differences in brain activation between novices and experts in science during a task involving a common misconception in electricity. Mind, Brain, and Education, 8(1), 44–55. https://doi.org/10.1111/mbe.12043
  • Muis, K. R., Trevors, G. J., & Chevrier, M. (2016). Epistemic climate for epistemic change. In J. A. Greene, W. A. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 331–359). Routledge.
  • Nadelson, L. S., Heddy, B. C., Jones, S., Taasoobshirazi, G., & Johnson, M. (2018). Conceptual change in science teaching and learning: Introducing the dynamic model of conceptual change. International Journal of Educational Psychology, 7(2), 151–195. https://doi.org/10.17583/ijep.2018.3349
  • Nussbaum, J., & Novick, S. (1981, April). Creating cognitive dissonance between students’ preconceptions to encourage individual cognitive accommodation and a group cooperative construction of a scientific model [Paper presentation]. The American Educational Research Association (AERA), Los Angeles.
  • Nussbaum, J., & Novick, S. (1982). Alternative frameworks, conceptual conflict and accommodation: Toward a principled teaching strategy. Instructional science, 11(3), 183–200. doi: 10.1007/BF00414279
  • Nussbaum, J., & Novick, S. (1982). Alternative frameworks, conceptual conflict and accommodation: Toward a principled teaching strategy. Instructional Science, 11(3), 183–200. https://doi.org/10.1007/BF00414279
  • Ohlsson, S. (2009). Resubsumption: A possible mechanism for conceptual change and belief revision. Educational Psychologist, 44(1), 20–40. https://doi.org/10.1080/00461520802616267
  • Ohlsson, S. (2013). Beyond evidence-based belief formation: How normative ideas have constrained conceptual change research. Frontline Learning Research, 1 (2) , 70–85 doi:10.14786/flr.v1i2.58.
  • Parker, J. (2006). Exploring the impact of varying degrees of cognitive conflict in the generation of both subject and pedagogical knowledge as primary trainee teachers learn about shadow formation. International Journal of Science Education, 28(13), 1545–1577. https://doi.org/10.1080/09500690600780179
  • Pesman, H., & Eryilmaz, A. (2010). Development of a three-tier test to assess misconceptions about simple electric circuits. The Journal of Educational Research, 103(3), 208–222. https://doi.org/10.1080/00220670903383002
  • Piaget, J. (1975). L’équilibration des structures cognitives. Problème central du développement. Presses de l’Université de France.
  • Piaget, J. (1970). Piaget’s theory. In P. H. Mussen (Ed.), Carmichaels’ manual of child psychology (Vol. 1, pp. 703–723). Wiley.
  • Pickering, M., & Monts, D. L. (1982). How students reconcile discordant data: A study of lab report discussions. Journal of Chemical Education, 59(9), 794. https://doi.org/10.1021/ed059p794
  • Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond Cold Conceptual Change: The Role of Motivational Beliefs and Classroom Contextual Factors in the Process of Conceptual Change. Review of Educational Research, 63(2), 167–199. doi: 10.3102/00346543063002167
  • Pintrich, P. R. (1999). Motivational beliefs as resources for and constraints on conceptual change. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.), New perspectives on conceptual change (pp. 3–13). Elsevier Science Ltd.
  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science education, 66(2), 211–227. doi: 10.1002/sce.3730660207
  • Posner, G., Strike, K., Hewson, P. W., & Gertzog, W. (1982). Accomodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227. https://doi.org/10.1002/sce.3730660207
  • Potvin, P., & Cyr, G. (2017). Toward a durable prevalence of scientific conceptions: Tracking the effects of two interfering misconceptions about buoyancy from preschoolers to science teachers. Journal of Research in Science Teaching, 54(9), 1121–1142. https://doi.org/10.1002/tea.21396
  • Potvin, P., Malenfant-Robichaud, G., Cormier, C., & Masson, S. (2020). Coexistence of misconceptions and scientific conceptions in chemistry professors: A mental chronometry and fMRI study. Frontiers in Education, 5 1–16 doi:10.3389/feduc.2020.542458 . https://doi.org/10.3389/feduc.2020.542458
  • Potvin, P., Nenciovici, L., Malenfant-Robichaud, G., Thibault, F., Sy, O., Mahhou, M. A., Bernard, A., Allaire-Duquette, G., Blanchette Sarrasin, J., Brault Foisy, L. -M., Brouillette, N., St-Aubin, -A. -A., Charland, P., Masson, S., Riopel, M., Tsai, -C. -C., Bélanger, M., & Chastenay, P. (2020). Models of conceptual change in science learning: Establishing an exhaustive inventory based on support given by articles published in major journals. Studies in Science Education, 56(2), 157–211. https://doi.org/10.1080/03057267.2020.1744796
  • Potvin, P., Sauriol, É., & Riopel, M. (2015). Experimental evidence of the superiority of the prevalence model of conceptual change over the classical models and traditional teaching. Journal of Research in Science Teaching, 52(8), 1082–1108. https://doi.org/10.1002/tea.21235
  • Potvin, P., Skelling-Desmeules, Y., & Sy, O. (2015). Exploring secondary students’ conceptions about fire using a two-tier, true/false,easy-to-use diagnostic test. Journal of Education in Science, Environment and Health, 2(1), 62–78 doi:10.21891/jeseh.99647.
  • Potvin, P., & Thouin, M. (2003). Étude qualitative d’évolutions conceptuelles en contexte d’explorations libres en physique-mécanique au secondaire [Qualitative study of conceptual evolutions in the context of free explorations in physics-mechanics in high school]. Revue des sciences de l'éducation, 29(3), 525–544. 10.7202/011402ar
  • Potvin, P. (2013). Proposition for improving the classical models of conceptual change based on neuroeducational evidence: Conceptual prevalence. Neuroeducation, 1(2), 16–43. https://doi.org/10.24046/neuroed.20130201.16
  • Potvin, P. (2017). The coexistence claim and its possible implications for success in teaching for conceptual “change”. European Journal of Science and Mathematics Education, 5(1), 55–66. https://doi.org/10.30935/scimath/9497
  • Potvin, P. (2018). Faire apprendre les sciences et la technologie à l’école. Épistémologie, didactique, sciences cognitives et neurosciences au service de l’enseignant [Making students learn science and technology in school: Epistemology, didactics, cognitive sciences and neurosciences for teachers]. Presses de l’Université Laval.
  • Ravanis, K., Christidou, V., & Hatzinikita, V. (2013). Enhancing conceptual change in preschool children’s representations of light: A sociocognitive approach. Research in Science Education, 43(6), 2257–2276. https://doi.org/10.1007/s11165-013-9356-z
  • Sayce, L. (2009). The Route to Cognitive Conflict (A Planning Toolkit for Teachers). Reading Borough Council and NCETM.
  • Schulz, L. E., Goodman, N. D., Tenenbaum, J. B., & Jenkins, A. C. (2008). Going beyond the evidence: Abstract laws and preschoolers’ responses to anomalous data. Cognition, 109(2), 211–223. https://doi.org/10.1016/j.cognition.2008.07.017
  • Shepardson, D. P., & Moje, E. B. (1999). The role of anomalous data in restructuring fourth graders’ frameworks for understanding electric circuits. International Journal of Science Education, 21(1), 77–94. https://doi.org/10.1080/095006999290840
  • Shtulman, A. (2009). Rethinking the role of resubsumption in conceptual change. Educational Psychologist, 44(1), 41–47. https://doi.org/10.1080/00461520802616275
  • Sinatra, G. M., & Pintrich, P. R. (2003). Intentional conceptual change. Lawrence Erlbaum Associates.
  • Smith, J. P. I., diSessa, A. A., & Rochelle, J. (1994). Misconceptions reconcieved: A constructivist analysis of knowledge in transition. Journal of the Learning Sciences, 3(2), 115–163. https://doi.org/10.1207/s15327809jls0302_1
  • Stavy, R., & Berkovitz, B. (1980). Cognitive conflict as a basis for teaching quantitative aspects of the concept of temperature. Science Education, 64(5), 679–692. https://doi.org/10.1002/sce.3730640514
  • Stavy, R., & Tirosh, D. (2000). How students (mis-)understand science and mathematics. Teachers College Press.
  • Sternberg, R. J. (2009). Foreword. In S. Tobias & T. M. Duffy (Eds.), Constructivist instruction: Success or failure? (pp. x–xi). Routledge.
  • Sweller, J. (2009). What human architecture tell us about constructivism. In S. Tobias & T. M. Duffy (Eds.), Constructivist instruction: Success or failure? (pp. 127–144). Routledge.
  • Thomas, C. L., & Kirby, L. A. J. (2020). Situational interest helps correct misconceptions: An investigation of conceptual change in university students. Instructional Science, 48(3), 223–241. https://doi.org/10.1007/s11251-020-09509-2
  • Tippett, C. D. (2010). Refutation text in science education: A review of two decades of research. International Journal of Science and Mathematics Education, 8(6), 951–970. https://doi.org/10.1007/s10763-010-9203-x
  • Tobias, S., & Duffy, T. M. (Eds.). (2009). Constructivist instruction: Success or failure? Routledge.
  • Toplis, R. (2007). Evaluating science investigations at ages 14–16: Dealing with anomalous results. International Journal of Science Education, 29(2), 127–150. https://doi.org/10.1080/09500690500498278
  • Toth, E. E. (2016). Analyzing “real-world” anomalous data after experimentation with a virtual laboratory. Educational Technology Research and Development, 64(1), 157–173. https://doi.org/10.1007/s11423-015-9408-3
  • Vamvakoussi, X. (2017). Using analogies to facilitate conceptual change in mathematics learning. ZDM Mathematics Education, 49(4), 497–507. https://doi.org/10.1007/s11858-017-0857-5
  • Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45–69. https://doi.org/10.1016/0959-4752(94)90018-3
  • Vosniadou, S. (2008b). International handbook of research on conceptual change. Routledge.
  • Vosniadou, S. (2008a). Conceptual change research: An introduction. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. xiii–xxviii). Routledge.
  • Wikipedia. (2021). Brachistochrone curve. https://en.wikipedia.org/wiki/Brachistochrone_curve
  • Wise, A. F., & O’Neill, K. (2009). A reframing on the debate on instructional guidance. In S. Tobias & T. M. Duffy (Eds.), Constructivist instruction: Success or failure? (pp. 82–105). Routledge.
  • Zimmerman, B. J., & Blom, D. E. (1983). Toward an empirical test of the role of cognitive conflict in learning. Developmental Review, 3(1), 18–38. https://doi.org/10.1016/0273-2297(83)90005-9
  • Zohar, A., & Aharon-Kravetsky, S. (2005). Exploring the effects of cognitive conflict and direct teaching for students of different academic levels. Journal of Research in Science Teaching, 42(7), 829–855. https://doi.org/10.1002/tea.20075

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.