386
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Design and development of advanced biosensing systems for the rapid detection of antibiotics

&
Pages 3616-3633 | Received 28 Dec 2020, Accepted 23 Mar 2021, Published online: 06 May 2021

References

  • Antimicrobial resistance - Monitoring and evaluation, World Health Organization. (n.d.). https://www.who.int/antimicrobial-resistance/global-action-plan/monitoring-evaluation/en/ (accessed Sep. 28, 2020).
  • F. Baquero, J.L. Martínez and R. Cantón, Curr. Opin. Biotechnol. 19 (3), 260 (2008). doi:10.1016/j.copbio.2008.05.006.
  • G. Kapoor, S. Saigal and A. Elongavan, J. Anaesthesiol. Clin. Pharmacol. 33, 300 (2017). doi:10.4103/joacp.JOACP_349_15.
  • E. Ebimieowei and A. Ibemologi, Int. J. Appl. Microbiol. Biotechnol. Res. 4, 90 (2016). doi:10.1161/01.CIR.96.2.535.
  • A. Chavez, A. Mian, A.M. Scurlock, D. Blackall and G. Com, J. Cyst. Fibros. 9, 433 (2010). doi:10.1016/j.jcf.2010.08.010.
  • K.J. Downes, M. Hayes, J.C. Fitzgerald, G.M. Pais, J. Liu, N.R. Zane, S.L. Goldstein, M.H. Scheetz and A.F. Zuppa, J. Antimicrob. Chemother. 75 (1), 1 (2020). doi:10.1093/jac/dkz325.
  • P. Ganesan, J. Schmiedge, V. Manchaiah, S. Swapna, S. Dhandayutham and P.P. Kothandaraman, J. Audiol. Otol. 22 (2), 59 (2018). doi:10.7874/jao.2017.00360.
  • Mechanisms of Antibacterial Drugs, Lumen Microbiol. (n.d.). https://courses.lumenlearning.com/microbiology/chapter/mechanisms-of-antibacterial-drugs/ (accessed Sep. 28, 2020).
  • S. Mölstad, S. Löfmark, K. Carlin, M. Erntell, O. Aspevall, L. Blad, H. Hanberger, K. Hedin, J. Hellman, C. Norman, G. Skoog, C. Stålsby-Lundborg, K. Tegmark Wisell, C. Åhréni and O. Cars, Bull. World Health Organ. 95 (11), 764 (2017). doi:10.2471/BLT.16.184374.
  • S. Krishnakumar, S. Mhasawade, N. Sethu, C. Tagad and R. Vyas, PCT application No: 201921037177, 2020.
  • N. Sebastian, W.C. Yu and D. Balram, Inorg. Chem. Front. 6 (1), 82 (2019). doi:10.1039/c8qi01000e.
  • H.S. Stevenson, S.S. Shetty, N.J. Thomas, V.N. Dhamu, A. Bhide and S. Prasad, ACS Omega 4 (4), 6324 (2019). doi:10.1021/acsomega.8b03534.
  • P.P. Chaudhari, L.K. Chau, Y.T. Tseng, C.J. Huang and Y.L. Chen, Microchim. Acta 187 (7) (2020). doi:10.1007/s00604-020-04381-w.
  • N. Yildirim-Tirgil, J. Lee, H. Cho, H. Lee, S. Somu, A. Busnaina and A.Z. Gu, Anal. Methods 11, 2692 (2019). doi:10.1039/c9ay00455f.
  • A. Kling, C. Chatelle, L. Armbrecht, E. Qelibari, J. Kieninger, C. Dincer, W. Weber and G. Urban, Anal. Chem. 88, 10036 (2016). doi:10.1021/acs.analchem.6b02294.
  • X. Chen, S. Hao, B. Zong, C. Liu and S. Mao, Biosens. Bioelectron. 145, 111711 (2019). doi:10.1016/j.bios.2019.111711.
  • C. Li, C. Zeng, Z. Chen, Y. Jiang, H. Yao, Y. Yang and W.T. Wong, J. Hazard. Mater. 384, 121498 (2020). doi:10.1016/j.jhazmat.2019.121498.
  • Z. Rouhbakhsh, A. Verdian and G. Rajabzadeh, Talanta 206, 120246 (2020). doi:10.1016/j.talanta.2019.120246.
  • L. Zhang, Y. Zhao, Y. Wu, Y. Jiang, Q. Wang, X. Lin, G. Song, K. Huang and Z. Yao, Sens. Actuators B Chem. 321, 128594 (2020). doi:10.1016/j.snb.2020.128594.
  • M.Y. Lu, W.C. Kao, S. Belkin and J.Y. Cheng, Sensors (Switzerland) 19 (18), 3882 (2019). doi:10.3390/s19183882.
  • J. Zeng, N. Gan, K. Zhang, L. He, J. Lin, F. Hu and Y. Cao, Talanta 199, 491 (2019). doi:10.1016/j.talanta.2019.03.005.
  • J. Deng, Y. Liu, X. Lin, Y. Lyu, P. Qian and S. Wang, Sens. Actuators B Chem. 273, 1495 (2018). doi:10.1016/j.snb.2018.07.065.
  • K.W. Li and Y.K. Yen, Biosens. Bioelectron. 130, 420 (2019). doi:10.1016/j.bios.2018.09.014.
  • S. Jafari, M. Dehghani, N. Nasirizadeh, M.H. Baghersad and M. Azimzadeh, Meas. J. Int. Meas. Confed. 145, 22 (2019). doi:10.1016/j.measurement.2019.05.068.
  • A. Wong, A.M. Santos, F.H. Cincotto, F.C. Moraes, O. Fatibello-Filho and M.D.P.T. Sotomayor, Talanta 206, 120252 (2020). doi:10.1016/j.talanta.2019.120252.
  • K. Bano, S.Z. Bajwa, N.J. Bassous, T.J. Webster, A. Shaheen, A. Taj, S. Hameed, B. Tehseen, Z. Dai, M.Z. Iqbal and W.S. Khan, Appl. Nanosci. 9, 1341 (2019). doi:10.1007/s13204-019-01003-7.
  • Z. Li, C. Liu, V. Sarpong and Z. Gu, Biosens. Bioelectron. 126, 632 (2019). doi:10.1016/j.bios.2018.10.025.
  • G. Rosati, M. Ravarotto, M. Scaramuzza, A. De Toni and A. Paccagnella, Sens. Actuators B Chem. 280, 280 (2019). doi:10.1016/j.snb.2018.09.084.
  • R. Parthasarathy, C.E. Monette, S. Bracero and S. Margaret, FEMS Microbiol. Ecol. 94, 1 (2018). doi:10.1093/femsec/fiy105.
  • L. Chen, H. Lin, H. Li, M. Wang, B. Qiu and Z. Yang, Total Environ. 650, 769 (2019). doi:10.1016/j.scitotenv.2018.08.437.
  • S.A. Khatibi, S. Hamidi and M.R. Siahi-shadbad, Crit. Rev. Food Sci. Nutr. 1 (2020). doi:10.1080/10408398.2020.1798349.
  • L. Tao, W. Ce, Z. Xu and C. Amit, Chemosphere 254, (2020). doi:10.1016/j.chemosphere.2020.126765.
  • J. Li, Y. Cui, D. Liu, M. Li, J. Gao and Y. Jiang, J. Pharm. Biomed. Anal. 194, 113767 (2021). doi:10.1016/j.jpba.2020.113767.
  • E.S. Chirila, C. Draghici and S. Dobrinas, Chem. Intentional Accid. Glob. Environ. Threat. 7 (2006). doi:10.1007/978-1-4020-5098-5_2
  • X. Ma, H. Li, S. Qiao, C. Huang, Q. Liu and X. Shen, Food Chem. 302, 125359 (2020). doi:10.1016/j.foodchem.2019.125359.
  • Z. Dong, J. Lu, Y. Wu, M. Meng, C. Yu, C. Sun and M. Chen, Food Chem. 333, 127477 (2020). doi:10.1016/j.foodchem.2020.127477.
  • Y. Chen, X. Li, M. Yang, L. Yang, X. Han, X. Jiang and B. Zhao, Talanta 167, 236 (2017). doi:10.1016/j.talanta.2017.02.022.
  • N.E. Markina, I.Y. Goryacheva and A.V. Markin, Anal. Bioanal. Chem. 410 (8), 2221 (2018). doi:10.1007/s00216-018-0888-y.
  • Z. Zhang, X. Cao, Z. Zhang, J. Yin, D. Wang, Y. Xu, W. Zheng, X. Li, Q. Zhang and L. Liu, Talanta 208, 120385 (2020). doi:10.1016/j.talanta.2019.120385.
  • R. Nirala, K. Anjana, K. Mandal and C. Jayachandran, Int. J. Livest. Res. 8 (5), 61 (2018). doi:10.5455/ijlr.20180215114144.
  • D.R. Bobbitt and K.W. Ng, J. Chromatogr. 624, 153 (1992). doi:10.1016/0021-9673(92)85677-l.
  • F. Pharmacopia, J. Chromatogr. Libr. 1, 1 (1973). doi:10.1016/S0301-4770(08)61525-0.
  • R.B. Hagel, E.H. Waysek and W.M. Cort, Agents Chemother. 16, 372 (1979). doi:10.1128/AAC.16.3.372.
  • T. Qualls, C. Agouridis and M. Kulshrestha, Young Investig. 33, 19 (2017). doi:10.22186/jyi.33.1.19-27.
  • X. Lou, Y. Tang, C. Fang, C. Kong, H. Yu, Y. Shi, D. Huang, Y. Guo and D. Xiao, Chirality 32, 324 (2020). doi:10.1002/chir.23159.
  • Q. Liu, J. Li, X. Song, M. Zhang, E. Li, F. Gao and L. He, RSC Adv. 7, 1251 (2017). doi:10.1039/c6ra26581b.
  • R. Hari, S. Taherunnisa, S.Y. Raut, S. Mutalik and K.B. Koteshwara, J. Appl. Pharm. Sci. 9, 145 (2019). doi:10.7324/JAPS.2019.91118.
  • A.O. Oyedeji, T.A.M. Msagati, A.B. Williams and N.U. Benson, J. Phys. Conf. Ser. 42053 (2019). IOP Publishing. doi:10.1088/1742-6596/1378/4/042053.
  • S. Thangadurai, S.K. Shukla and Y. Anjaneyulu, Science 18, 97 (2002). doi:10.2116/analsci.18.97.
  • S.M. Santos, M. Henriques, A.C. Duarte and V.I. Esteves, Talanta 71, 731 (2007). doi:10.1016/j.talanta.2006.05.049.
  • A. Oedit, P. Vulto, R. Ramautar, P.W. Lindenburg and T. Hankemeier, Curr. Opin. Biotechnol. 31, 79 (2015). doi:10.1016/j.copbio.2014.08.009.
  • K. Rajpoot, Biosens. J. 06, (2017). doi:10.4172/2090-4967.1000145.
  • H.A. Abdulbari and E.A.M. Basheer, Chem. Bio. Eng. Rev. 4, 92 (2017). doi:10.1002/cben.201600009.
  • R. Monošik, M. Stred’ansky and E. Šturdík, J. Clin. Lab. Anal. 26, 22 (2012). doi:10.1002/jcla.20500.
  • A.J. Veloso, X.R. Cheng and K. Kerman, Electrochemical Biosensors for Medical Applications, in Biosensors for Medical Applications, edited by Higson (Elsevier Masson SAS, 2012), pp. 3–40. doi:10.1533/9780857097187.1.3.
  • C.I.L. Justino, A.C. Duarte and T.A.P. Rocha-Santos, Sensors (Switzerland) 17, 2918 (2017). doi:10.3390/s17122918.
  • J. Bunney, S. Williamson, D. Atkin, M. Jeanneret, D. Cozzolino, J. Chapman, A. Power and S. Chandra, Curr. Res. Nutr. Food Sci. 5, 183 (2017). doi:10.12944/CRNFSJ.5.3.02.
  • D. Grieshaber, R. MacKenzie, J. Vörös and E. Reimhult, Sensors 8, 1400 (2008). doi:10.3390/s80314000.
  • M. Majdinasab, K. Mitsubayashi and J.L. Marty, Trends Biotechnol. 37, 898 (2019). doi:10.1016/j.tibtech.2019.01.004.
  • F.D. Munteanu, A.M. Titoiu, J.L. Marty and A. Vasilescu, Sensors (Switzerland) 18, 901 (2018). doi:10.3390/s18030901.
  • Z. Taleat, A. Khoshroo and M. Mazloum-Ardakani, Microchim. Acta 181 (9–10), 865 (2014). doi:10.1007/s00604-014-1181-1.
  • E. Khaled, M.M. Khalil and G.M. Abed El Aziz, Sens. Actuators B Chem. 244, 876 (2017). doi:10.1016/j.snb.2017.01.033.
  • L. Del Torno-De Román, M. Asunción Alonso-Lomillo, O. Domínguez-Renedo and M. Julia Arcos-Martínez, Sens. Actuators B Chem. 227, 48 (2016). doi:10.1016/j.snb.2015.12.053.
  • S.H. Jalalian, N. Karimabadi, M. Ramezani, K. Abnous and S.M. Taghdisi, Technol 73, 45 (2018). doi:10.1016/j.tifs.2018.01.009.
  • K. Abnous, N.M. Danesh, M. Alibolandi, M. Ramezani, S.M. Taghdisi and A.S. Emrani, Toxicol. Appl. Pharmacol. 280, 100 (2014). doi:10.1016/j.snb.2016.08.100.
  • K. Teekayupak, N. Ruecha and N. Rodthongkum, Pure and Applied Chemistry International Conference 2019 (BITEC, Bangkok, Thailand, 2019), p. 8.
  • F.S. Ligler, Chem 81, 519 (2009). doi:10.1021/ac8016289.
  • F. Long, A. Zhu, C. Gu and H. Shi, State Art Biosens. - Environ. Med. Appl. 2013, 3. doi:10.5772/52252
  • Q. Wang and W.-M. Zhao, Sens. Actuators B Chem 269, 238 (2018). doi:10.1016/j.snb.2018.04.097.
  • C.M. Miyazaki, F.M. Shimizu and M. Ferreira, Surface Plasmon Resonance (SPR) for Sensors and Biosensors, in Nanocharacterization Techniques, edited by A.L. Da Róz, F. Marystela, L. Fabio De Lima, J. Osvaldo and N. Oliveira (Elsevier, 2017), pp. 183–200. doi:10.1016/B978-0-323-49778-7.00006-0
  • S. Firdous, S. Anwar and R. Rafya, Laser Phys. Lett. 15, 065602 (2018). doi:10.1088/1612-202X/aab43f.
  • A. Leung, P.M. Shankar and R. Mutharasan, Sens. Actuators, B Chem. 125, 688 (2007). doi:10.1016/j.snb.2007.03.010.
  • A. Mason, M. Soprani, O. Korostynska, A. Amirthalingam, J. Cullen, M. Muradov, E.N. Carmona, G. Sberveglieri, V. Sberveglieri and A. Al-Shamma’a, Sensors 20, 1 (2018). doi:10.1155/2018/7976105.
  • P. Weber, J. Vogler and G. Gauglitz, in Optical Sensors 2017 (SPIE Optics + Optoelectronics, Prague, Czech Republic, 2017). doi:10.1117/12.2267467.
  • M. Wang, M. Hu, J. Liu, C. Guo, D. Peng, Q. Jia, L. He, Z. Zhang and M. Du, Biosens. Bioelectron. 132, 8 (2019). doi:10.1016/j.bios.2019.02.040.
  • X. Liu, D. Huang, C. Lai, G. Zeng, L. Qin, C. Zhang, H. Yi, B. Li, R. Deng and S. Liu, TrAC Trends Anal. Chem. 109, 260 (2018). doi:10.1016/j.trac.2018.10.011.
  • N.A. Karaseva and T.N. Ermolaeva, Talanta 120, 312 (2014). doi:10.1016/j.talanta.2013.12.018.
  • A.K. Basu, A. Basu and S. Bhattacharya, Enzyme Microb. Technol. 139, 109558 (2020). doi:10.1016/j.enzmictec.2020.109558.
  • L. Lan, Y. Yao, J. Ping and Y. Ying, Biosens. Bioelectron. 91, 504 (2017). doi:10.1016/j.bios.2017.01.007.
  • S.K. Krishnan, E. Singh, P. Singh, M. Meyyappan and H.S. Nalwa, RSC Adv. 9, 8778 (2019). doi:10.1039/C8RA09577A.
  • M.R. Willner and P.J. Vikesland, Nanobiotechnology 16, 1 (2018). doi:10.1186/s12951-018-0419-1.
  • I.E. Tothill and M.J. Abdin, in Nanotechnology, edited by R. Prasad, V. Kumar and M. Kumar (Springer, Singapore, 2017), p. 131. doi:10.1007/978-981-10-4678-0_8.
  • N. Karaseva, T. Ermolaeva and B. Mizaikoff, Sens. Actuators B Chem. 225, 199 (2016). doi:10.1016/j.snb.2015.11.045.
  • C. Cristea, M. Tertis and R. Galatus, Nanomaterials 7, 119 (2017). doi:10.3390/nano7060119.
  • S. Gupta, K. Ramesh, S. Ahmed and V. Kakkar, Int. J. Bio-Sci. Bio-Technol. 8, 311 (2016). doi:10.14257/ijbsbt.2016.8.5.28.
  • B. Yilmaz and F. Yilmaz, Improv. Qual. Life 1, 145 (2018). doi:10.1016/B978-0-12-804659-3.00008-7.
  • C.W. Tsao, Micromachines 7, 225 (2016). doi:10.3390/mi7120225.
  • D.E.W. Patabadige, S. Jia, J. Sibbitts, J. Sadeghi, K. Sellens and C.T. Culbertson, Anal. Chem. 88, 320 (2016). doi:10.1021/acs.analchem.5b04310.
  • M.D. Tarn and N. Pamme, Microfluidics, in The Reference Module in Chemistry, Molecular Sciences Engineering, edited by N.B. Jan Reedijk (Elsevier Inc., 2013), p. 1. doi:10.1016/b978-0-12-409547-2.05351-8
  • G.-P. Nikoleli, C.G. Siontorou, D.P. Nikolelis, S. Bratakou, S. Karapetis and N. Tzamtzis, in Nanotechnology and Biosensors (Elsevier, 2018), p. 375. doi:10.1016/B978-0-12-813855-7.00013-1.
  • D. Qin, Y. Xia and G.M. Whitesides, Nat. Protocol. 5, 491 (2010). doi:10.1038/nprot.2009.234.
  • J.P. Conde, N. Madaboosi, R.R.G. Soares, J.T.S. Fernandes, P. Novo, G. Moulas and V. Chu, Essays Biochem. 60, 121 (2016). doi:10.1042/EBC20150013.
  • A.L. Campaña, S.L. Florez, M.J. Noguera, O.P. Fuentes, P.R. Puentes, J.C. Cruz and J.F. Osma, Biosensors 9, 41 (2019). doi:10.3390/bios9010041.
  • A.F. Sauer-Budge, P. Mirer, A. Chatterjee, C.M. Klapperich, D. Chargin and A. Sharon, Lab Chip 9, 2803 (2009). doi:10.1039/b904854e.
  • J.W. Choi, Y.K. Kim, H.J. Kim, W. Lee and G.H. Seong, J. Microbiol. Biotechnol. 16, 1229 (2006).
  • B.K. Gale, A.R. Jafek, C.J. Lambert, B.L. Goenner, H. Moghimifam, U.C. Nze and S.K. Kamarapu, Inventions 3, 60 (2018). doi:10.3390/inventions3030060.
  • K. Ren, J. Zhou and H. Wu, Acc. Chem. Res. 46, 2396 (2013). doi:10.1021/ar300314s.
  • Introduction About PDMS Soft-Lithography and Polymer Molding for Microfluidics, ELVEFLOW. (n.d.). https://www.elveflow.com/microfluidic-tutorials/soft-lithography-reviews-and-tutorials/introduction-in-soft-lithography/introduction-about-soft-lithography-and-polymer-molding-for-microfluidic (accessed Sep. 28, 2020).
  • S.K. Sia and G.M. Whitesides, Electrophoresis 24, 3563 (2003). doi:10.1002/elps.200305584.
  • M. Sierra-Rodero, J.M. Fernández-Romero and A. Gómez-Hens, Microchim. Acta 179, 185 (2012). doi:10.1007/s00604-012-0878-2.
  • C. Szydzik, A.F. Gavela, J. Roccisano, S. Herranz De Andrés, A. Mitchell and L.M. Lechuga, SPIE Bio. Photonics Australas 10013, 100132C (2016). doi:10.1117/12.2242885.
  • A. Wang, D. Koh, P. Schneider, E. Breloff and K.W. Oh, Micromachines 10, 1 (2019). doi:10.3390/mi10080543.
  • P.S. Peixoto, A. Machado, H.P. Oliveira, A.A. Bordalo and M.A. Segundo, Paper-Based Biosensors for Analysis of Water, in Biosensors for Environmental Monitoring, edited by T.  Rinken (IntechOpen, 2019). doi:10.5772/intechopen.84131.
  • S. Altundemir, A.K. Uguz and K. Ulgen, Biomicrofluidics 11, 041501 (2017). doi:10.1063/1.4991504.
  • K. Yamada, T.G. Henares, K. Suzuki and D. Citterio, Angew. Chem. Int. Ed. 54, 5294 (2015). doi:10.1002/anie.201411508.
  • S. Atabakhsh, Z.L. Namin and S.J. Ashtiani, Microsyst. Technol. 24, 3915 (2018). doi:10.1007/s00542-018-3891-5.
  • W. Dungchai, O. Chailapakul and C.S. Henry, Analyst 136, 77 (2011). doi:10.1039/C0AN00406E.
  • W. Su, B.S. Cook, Y. Fang and M.M. Tentzeris, Sci. Rep. 6, 1 (2016). doi:10.1038/srep35111.
  • H. Asano and Y. Shiraishi, Anal. Chim. Acta 883, 55 (2015). doi:10.1016/j.aca.2015.04.014.
  • L. Yu and Z.Z. Shi, Lab Chip 15, 1642 (2015). doi:10.1039/c5lc00044k.
  • J. Hiltunen, C. Liedert, M. Hiltunen, O.-H. Huttunen, J. Hiitola-Keinänen, S. Aikio, M. Harjanne, M. Kurkinen, L. Hakalahti and L.P. Lee, Lab Chip 18, 1552 (2018). doi:10.1039/c8lc00269j.
  • Z. Xin, M. Yan, L. Gu, J. Liu, R. Liu, L. Li, Y. Fang, L. Mo, Y. Li and Y. Shen, Adv. Mater. Interfaces 6, 1802047 (2019). doi:10.1002/admi.201802047.
  • R. Ghosh, S. Gopalakrishnan, R. Savitha, T. Renganathan and S. Pushpavanam, Sci. Rep. 9, 1 (2019). doi:10.1038/s41598-019-44455-1.
  • L. Cai, C. Xu, S. Lin, J. Luo, M. Wu and F. Yang, Biomicrofluidics 8, 56504 (2014). doi:10.1063/1.4898096.
  • P.J. Lamas-Ardisana, P. Casuso, I. Fernandez-Gauna, G. Martínez-Paredes, E. Jubete, L. Añorga, G. Cabañero and H.J. Grande, Electrochem. Commun. 75, 25 (2017). doi:10.1016/j.elecom.2016.11.015.
  • V. Suresh, O. Qunya, B.L. Kanta, L.Y. Yuh and K.S.L. Chong, R. Soc. Open Sci. 5, 171980 (2018). doi:10.1098/rsos.171980.
  • N.A. Meredith, J. Volckens and C.S. Henry, Anal. Methods 9, 534 (2017). doi:10.1039/c6ay02798a.
  • E.B. Strong, S.A. Schultz, A.W. Martinez and N.W. Martinez, Rep 9, 1 (2019). doi:10.1038/s41598-018-37029-0.
  • A. Nilghaz and X. Lu, Anal. Chim. Acta 1046, 163 (2019). doi:10.1016/j.aca.2018.09.041.
  • J. Li, X. Wang, Y. Shan, H. Huang, D. Jian, L. Xue, S. Wang and F. Liu, Micromachines 10, (2019). doi:10.3390/mi10010027.
  • K.N. Han, J.S. Choi and J. Kwon, Rep 6, 1 (2016). doi:10.1038/srep25710.
  • F. Costantini, R.M. Tiggelaar, R. Salvio, M. Nardecchia, S. Schlautmann, C. Manetti, H.J.G.E. Gardeniers, G. De Cesare, D. Caputo and A. Nascetti, Biosensors 7, 1 (2017). doi:10.3390/bios7040058.
  • H. Yan, C.J. Yang, N. Tang, Y. Zou, S. Chakravarty, A. Roth and R.T. Chen, IEEE Sens. J. 17, 5915 (2017). doi:10.1109/JSEN.2017.2734885.
  • E. Luan, H. Shoman, D.M. Ratner, K.C. Cheung and L. Chrostowski, Sensors 18, 3519 (2018). doi:10.3390/s18103519.
  • V. Perumal, U. Hashim and T. Adam, Adv. Mater. Res. 832, 84 (2014). https://doi.org/10.4028/www.scientific.net/AMR.832.84.
  • Espresso Extensible Simulation Package for Research on Soft Matter Systems, (n.d.). http://espressomd.org/wordpress/ (accessed Sep. 28, 2020).
  • K. Kovalčíková, M. Slavík, K. Bachratá, H. Bachratý and A. Bohiniková, EPJ Web Conf. 180, 1 (2018). doi:10.1051/epjconf/201818002046.
  • Micro/Bio/Nano Fluidics, (n.d.). https://www.flow3d.com/industries/micro-bio-nano-fluidics/(accessed Sep. 28, 2020).
  • A. Chandorkar and S. Palit, Sensors & Transducers (2009).
  • The COMSOL® Software Product Suite, (n.d.). https://www.comsol.com/products (accessed Sep. 28, 2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.