2,990
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Continuous cell lines from the Muscovy duck as potential replacement for primary cells in the production of avian vaccines

, , , , , , , , , & show all
Pages 137-155 | Received 08 Jul 2015, Accepted 19 Oct 2015, Published online: 21 Apr 2016

References

  • Ackland, N.R., Tannock, G.A. & Young, I.F. (1985). A device for the nondestructive decontamination of large volumes of infected egg waste. Applied and Environmental Microbiology, 49, 920–924.
  • Adair, B.M., McFerran, J.B., Connor, T.J., McNulty, M.S. & McKillop, E.R. (1979). Biological and physical properties of a virus (strain 127) associated with the egg drop syndrome 1976. Avian Pathology, 8, 249–264. doi: 10.1080/03079457908418350
  • Afonso, C.L., Tulman, E.R., Lu, Z., Zsak, L., Rock, D.L. & Kutish, G.F. (2001). The genome of turkey herpesvirus. Journal of Virology, 75, 971–978. doi: 10.1128/JVI.75.2.971-978.2001
  • Andre, F.E., Booy, R., Bock, H.L., Clemens, J., Datta, S.K., John, T.J., Lee, B.W., Lolekha, S., Peltola, H., Ruff, T.A., Santosham, M. & Schmitt, H.J. (2008). Vaccination greatly reduces disease, disability, death and inequity worldwide. Bulletin of the World Health Organization, 86, 140–146. doi: 10.2471/BLT.07.040089
  • Baigent, S.J., Smith, L.P., Currie, R.J.W. & Nair, V.K. (2005). Replication kinetics of Marek's disease vaccine virus in feathers and lymphoid tissues using PCR and virus isolation. Journal of General Virology, 86, 2989–2998. doi: 10.1099/vir.0.81299-0
  • Bano, S., Naeem, K. & Malik, S.A. (2003). Evaluation of pathogenic potential of avian influenza virus serotype H9N2 in chickens. Avian Diseases, 47, 817–822. doi: 10.1637/0005-2086-47.s3.817
  • Beaudette, F.R. (1950). Infectious bronchitis (differential characteristics from Newcastle disease). Canadian Journal of Comparative Medicine and Veterinary Science, 14, 24–27.
  • Beaudette, F.R. & Hudson, C.R. (1937). Cultivation of the virus of infectious bronchitis. Journal of the American Veterinary Medical Association, 90, 51–60.
  • Belouzard, S., Millet, J.K., Licitra, B.N. & Whittaker, G.R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4, 1011–1033. doi: 10.3390/v4061011
  • van den Berg, T. (2009). The role of the legal and illegal trade of live birds and avian products in the spread of avian influenza. Revue Scientifique et Technique (International Office of Epizootics), 28, 93–111.
  • Berg, T.P. (2000). Acute infectious bursal disease in poultry: a review. Avian Pathology, 29, 175–194. doi: 10.1080/03079450050045431
  • Böni, J., Stalder, J., Reigel, F. & Schüpbach, J. (1996). Detection of reverse transcriptase activity in live attenuated virus vaccines. Clinical and Diagnostic Virology, 5, 43–53. doi: 10.1016/0928-0197(95)00159-X
  • Boseret, G., Losson, B., Mainil, J.G., Thiry, E. & Saegerman, C. (2013). Zoonoses in pet birds: review and perspectives. Veterinary Research, 44, 36. doi: 10.1186/1297-9716-44-36
  • Bross, I. (1950). Estimates of the LD 50: a critique. Biometrics, 6, 413–423. doi: 10.2307/3001785
  • Capua, I. & Marangon, S. (2006). Control of avian influenza in poultry. Emerging Infectious Diseases, 12, 1319–1324. doi: 10.3201/eid1209.060430
  • Casais, R., Dove, B., Cavanagh, D. & Britton, P. (2003). Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. Journal of Virology, 77, 9084–9089. doi: 10.1128/JVI.77.16.9084-9089.2003
  • Cavanagh, D. (2003). Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathology, 32, 567–582. doi: 10.1080/03079450310001621198
  • Cavanagh, D. (2007). Coronavirus avian infectious bronchitis virus. Veterinary Research, 38, 281–297. doi: 10.1051/vetres:2006055
  • Chen, G.-Q., Zhuang, Q.-Y., Wang, K.-C., Liu, S., Shao, J.-Z., Jiang, W.-M., Hou, G.-Y., Li, J.-P., Yu, J.-M., Li, Y.-P. & Chen, J.-M. (2013). Identification and survey of a novel avian coronavirus in ducks. PloS One, 8, e72918. doi: 10.1371/journal.pone.0072918
  • Chen, H.Y., Guo, A.Z., Peng, B., Zhang, M.F., Guo, H.Y. & Chen, H.C. (2007). Infection of HeLa cells by avian infectious bronchitis virus is dependent on cell status. Avian Pathology, 36, 269–274. doi: 10.1080/03079450701447291
  • Chua, J.V. & Chen, W.H. (2010). Bench-to-bedside review: vaccine protection strategies during pandemic flu outbreaks. Critical Care, 14, 218. doi: 10.1186/cc8891
  • Clifton, M. (2011). How to eradicate canine rabies: a perspective of historical efforts. Asian Biomed, 5, 559–568.
  • Collins, M.S., Bashiruddin, J.B. & Alexander, D.J. (1993). Deduced amino acid sequences at the fusion protein cleavage site of Newcastle disease viruses showing variation in antigenicity and pathogenicity. Archives of Virology, 128, 363–370. doi: 10.1007/BF01309446
  • Conan, A., Goutard, F.L., Sorn, S. & Vong, S. (2012). Biosecurity measures for backyard poultry in developing countries: a systematic review. BMC Veterinary Research, 8, 240. doi: 10.1186/1746-6148-8-240
  • Connor, J.H., McKenzie, M.O., Parks, G.D. & Lyles, D.S. (2007). Antiviral activity and RNA polymerase degradation following Hsp90 inhibition in a range of negative strand viruses. Virology, 362, 109–119. doi: 10.1016/j.virol.2006.12.026
  • Coria, M.F. & Peterson, J.K. (1971). Adaptation and propagation of avian infectious bronchitis virus in embryonic turkey kidney cell cultures. Avian Diseases, 15, 22–27. doi: 10.2307/1588383
  • Couteaudier, M. & Denesvre, C. (2014). Marek's disease virus and skin interactions. Veterinary Research, 45, 36. doi: 10.1186/1297-9716-45-36
  • Cowen, B.S. & Braune, M.O. (1988). The propagation of avian viruses in a continuous cell line (QT35) of Japanese quail origin. Avian Diseases, 32, 282–297. doi: 10.2307/1590815
  • Davis, H.E., Rosinski, M., Morgan, J.R. & Yarmush, M.L. (2004). Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophysical Journal, 86, 1234–1242. doi: 10.1016/S0006-3495(04)74197-1
  • Donis, R.O., Influenza Cell Culture Working Group, Influenza Cell Culture Working Group, Davis, C.T., Foust, A., Hossain, M.J., Johnson, A., Klimov, A., Loughlin, R., Xu, X., Tsai, T., Blayer, S., Trusheim, H., Colegate, T., Fox, J., Taylor, B., Hussain, A., Barr, I., Baas, C., Louwerens, J., Geuns, E., Lee, M.-S., Venhuizen, O., Neumeier, E. & Ziegler, T. (2014). Performance characteristics of qualified cell lines for isolation and propagation of influenza viruses for vaccine manufacturing. Vaccine, 32, 6583–6590. doi: 10.1016/j.vaccine.2014.06.045
  • Ebert, O., Shinozaki, K., Kournioti, C., Park, M.-S., García-Sastre, A. & Woo, S.L.C. (2004). Syncytia induction enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for cancer. Cancer Research, 64, 3265–3270. doi: 10.1158/0008-5472.CAN-03-3753
  • Ehreth, J. (2003). The value of vaccination: a global perspective. Vaccine, 21, 4105–4117. doi: 10.1016/S0264-410X(03)00377-3
  • EMA. (2014). WC500167255: CVMP Assessment Report for Parvoduk (EMEA/V/C/002740). International non-proprietary name: live attenuated Muscovy duck parvovirus. EMA/103539/2014.
  • Enserink, M. (2004). Influenza: crisis underscores fragility of vaccine production system. Science, 306, 385. doi: 10.1126/science.306.5695.385
  • Fey, S.B., Siepielski, A.M., Nusslé, S., Cervantes-Yoshida, K., Hwan, J.L., Huber, E.R., Fey, M.J., Catenazzi, A. & Carlson, S.M. (2015). Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proceedings of the National Academy of Sciences of the United States of America, 112, 1083–1088.
  • Fitzpatrick, M.C., Hampson, K., Cleaveland, S., Mzimbiri, I., Lankester, F., Lembo, T., Meyers, L.A., Paltiel, A.D. & Galvani, A.P. (2014). Cost-effectiveness of canine vaccination to prevent human rabies in rural Tanzania. Annals of Internal Medicine, 160, 91–100. doi: 10.7326/M13-0542
  • Galloway, J.N., Burke, M., Bradford, G.E., Naylor, R., Falcon, W., Chapagain, A.K., Gaskell, J.C., McCullough, E., Mooney, H.A., Oleson, K.L.L., Steinfeld, H., Wassenaar, T. & Smil, V. (2007). International trade in meat: the tip of the pork chop. Ambio, 36, 622–629. doi: 10.1579/0044-7447(2007)36[622:ITIMTT]2.0.CO;2
  • Gambotto, A., Barratt-Boyes, S.M., de Jong, M.D., Neumann, G. & Kawaoka, Y. (2008). Human infection with highly pathogenic H5N1 influenza virus. Lancet, 371, 1464–1475. doi: 10.1016/S0140-6736(08)60627-3
  • Geerligs, H., Quanz, S., Suurland, B., Spijkers, I.E.M., Rodenberg, J., Davelaar, F.G., Jongsma, B. & Kumar, M. (2008). Efficacy and safety of cell associated vaccines against Marek's disease virus grown in a continuous cell line from chickens. Vaccine, 26, 5595–5600. doi: 10.1016/j.vaccine.2008.07.080
  • Glotzer, J.B., Saltik, M., Chiocca, S., Michou, A.I., Moseley, P. & Cotten, M. (2000). Activation of heat-shock response by an adenovirus is essential for virus replication. Nature, 407, 207–211. doi: 10.1038/35025102
  • Häsler, B., Gilbert, W., Jones, B.A., Pfeiffer, D.U., Rushton, J. & Otte, M.J. (2013). The economic value of one health in relation to the mitigation of zoonotic disease risks. Current Topics in Microbiology and Immunology, 365, 127–151.
  • Hatakeyama, S., Sakai-Tagawa, Y., Kiso, M., Goto, H., Kawakami, C., Mitamura, K., Sugaya, N., Suzuki, Y. & Kawaoka, Y. (2005). Enhanced expression of an alpha2,6-linked sialic acid on MDCK cells improves isolation of human influenza viruses and evaluation of their sensitivity to a neuraminidase inhibitor. Journal of Clinical Microbiology, 43, 4139–4146. doi: 10.1128/JCM.43.8.4139-4146.2005
  • Hoa, L.K., Hiep, L.V. & Be, L.V. (2011). Development of pandemic influenza vaccine production capacity in Viet Nam. Vaccine, 29 ( Suppl. 1), A34–36. doi: 10.1016/j.vaccine.2011.04.118
  • Hosseini, P., Sokolow, S.H., Vandegrift, K.J., Kilpatrick, A.M. & Daszak, P. (2010). Predictive power of air travel and socio-economic data for early pandemic spread. PloS One, 5, e12763. doi: 10.1371/journal.pone.0012763
  • Hung, J.-J., Chung, C.-S. & Chang, W. (2002). Molecular chaperone Hsp90 is important for vaccinia virus growth in cells. Journal of Virology, 76, 1379–1390. doi: 10.1128/JVI.76.3.1379-1390.2002
  • Ito, T., Couceiro, J.N., Kelm, S., Baum, L.G., Krauss, S., Castrucci, M.R., Donatelli, I., Kida, H., Paulson, J.C., Webster, R.G. & Kawaoka, Y. (1998). Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. Journal of Virology, 72, 7367–7373.
  • Jones, B.A., Grace, D., Kock, R., Alonso, S., Rushton, J., Said, M.Y., McKeever, D., Mutua, F., Young, J., McDermott, J. & Pfeiffer, D.U. (2013). Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences of the United States of America, 110, 8399–8404. doi: 10.1073/pnas.1208059110
  • Jordan, I., Horn, D., Oehmke, S., Leendertz, F.H. & Sandig, V. (2009a). Cell lines from the Egyptian fruit bat are permissive for modified vaccinia Ankara. Virus Research, 145, 54–62. doi: 10.1016/j.virusres.2009.06.007
  • Jordan, I., Vos, A., Beilfuss, S., Neubert, A., Breul, S. & Sandig, V. (2009b). An avian cell line designed for production of highly attenuated viruses. Vaccine, 27, 748–756. doi: 10.1016/j.vaccine.2008.11.066
  • Jordan, I., Lohr, V., Genzel, Y., Reichl, U. & Sandig, V. (2013). Elements in the development of a production process for modified vaccinia virus Ankara. Microorganisms, 1, 100–121. doi: 10.3390/microorganisms1010100
  • Jordan, I., Northoff, S., Thiele, M., Hartmann, S., Horn, D., Höwing, K., Bernhardt, H., Oehmke, S., von Horsten, H., Rebeski, D., Hinrichsen, L., Zelnik, V., Mueller, W. & Sandig, V. (2011). A chemically defined production process for highly attenuated poxviruses. Biologicals: Journal of the International Association of Biological Standardization, 39, 50–58. doi: 10.1016/j.biologicals.2010.11.005
  • Jordan, I. & Sandig, V. (2008). Cell Line for Propagation of Highly Attenuated Alphaviruses. US Patent WO/2009/156155, pp. 1–42. Priority Date 25 June 2008.
  • Kapczynski, D.R., Esaki, M., Dorsey, K.M., Jiang, H., Jackwood, M., Moraes, M. & Gardin, Y. (2015). Vaccine protection of chickens against antigenically diverse H5 highly pathogenic avian influenza isolates with a live HVT vector vaccine expressing the influenza hemagglutinin gene derived from a clade 2.2 avian influenza virus. Vaccine, 33, 1197–1205. doi: 10.1016/j.vaccine.2014.12.028
  • Kim, J.-K., Negovetich, N.J., Forrest, H.L. & Webster, R.G. (2009). Ducks: the “Trojan horses” of H5N1 influenza. Influenza and Other Respiratory Viruses, 3, 121–128. doi: 10.1111/j.1750-2659.2009.00084.x
  • Kisary, J., Derzsy, D. & Meszaros, J. (1978). Attenuation of the goose parvovirus strain B. Laboratory and field trials of the attenuated mutant for vaccination against Derzsy's disease. Avian Pathology, 7, 397–406. doi: 10.1080/03079457808418293
  • Kobasa, D., Jones, S.M., Shinya, K., Kash, J.C., Copps, J., Ebihara, H., Hatta, Y., Kim, J.H., Halfmann, P., Hatta, M., Feldmann, F., Alimonti, J.B., Fernando, L., Li, Y., Katze, M.G., Feldmann, H. & Kawaoka, Y. (2007). Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature, 445, 319–323. doi: 10.1038/nature05495
  • Li, F.C.K., Choi, B.C.K., Sly, T. & Pak, A.W.P. (2008). Finding the real case-fatality rate of H5N1 avian influenza. Journal of Epidemiology and Community Health, 62, 555–559. doi: 10.1136/jech.2007.064030
  • Li, J., Hu, H., Yu, Q., Diel, D.G., Li, D. & Miller, P.J. (2012). Generation and characterization of a recombinant Newcastle disease virus expressing the red fluorescent protein for use in co-infection studies. Virology Journal, 9, 227. doi: 10.1186/1743-422X-9-227
  • Litamoi, J., Palya, V.J., Sylla, D. & Rweyemamu, M.M. (1996). Quality Control Testing of Contagious Bovine Pleuropneumonia Live Attenuated Vaccine. Standard operating procedure 2: Estimation of viable Mycoplasma Content of CBPP Vaccines (Microtitration Method).
  • Liu, S., Chen, J., Chen, J., Kong, X., Shao, Y., Han, Z., Feng, L., Cai, X., Gu, S. & Liu, M. (2005). Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas). The Journal of General Virology, 86, 719–725. doi: 10.1099/vir.0.80546-0
  • Lohr, V., Genzel, Y., Jordan, I., Katinger, D., Mahr, S., Sandig, V. & Reichl, U. (2012). Live attenuated influenza viruses produced in a suspension process with avian AGE1.CR.pIX cells. BMC Biotechnology, 12, 79. doi: 10.1186/1472-6750-12-79
  • Lohr, V., Rath, A., Genzel, Y., Jordan, I., Sandig, V. & Reichl, U. (2009). New avian suspension cell lines provide production of influenza virus and MVA in serum-free media: studies on growth, metabolism and virus propagation. Vaccine, 27, 4975–4982. doi: 10.1016/j.vaccine.2009.05.083
  • Madu, I.G., Chu, V.C., Lee, H., Regan, A.D., Bauman, B.E. & Whittaker, G.R. (2007). Heparan sulfate is a selective attachment factor for the avian coronavirus infectious bronchitis virus Beaudette. Avian Diseases, 51, 45–51. doi: 10.1637/0005-2086(2007)051[0045:HSIASA]2.0.CO;2
  • Maurin-Bernaud, L., Goutebroze, S., Merdy, O., Chanay, A., Cozette, V. & Le Gros, F.-X. (2014). Efficacy of a new attenuated duck parvovirosis vaccine in Muscovy ducks. The Veterinary Record, 175, 281. doi: 10.1136/vr.102584
  • McLeod, A. & Rushton, J. (2007). Economics of animal vaccination. Revue Scientifique Et Technique (International Office of Epizootics), 26, 313–326.
  • Melville, M.W., Tan, S.L., Wambach, M., Song, J., Morimoto, R.I. & Katze, M.G. (1999). The cellular inhibitor of the PKR protein kinase, P58(IPK), is an influenza virus-activated co-chaperone that modulates heat shock protein 70 activity. The Journal of Biological Chemistry, 274, 3797–3803. doi: 10.1074/jbc.274.6.3797
  • Mészáros, I., Tóth, R., Bálint, A., Dán, A., Jordan, I. & Zádori, Z. (2014). Propagation of viruses infecting waterfowl on continuous cell lines of Muscovy duck (Cairina moschata) origin. Avian Pathology, 43, 379–386.
  • Monath, T.P. (2013). Vaccines against diseases transmitted from animals to humans: a one health paradigm. Vaccine, 31, 5321–5338. doi: 10.1016/j.vaccine.2013.09.029
  • Monne, I., Hussein, H.A., Fusaro, A., Valastro, V., Hamoud, M.M., Khalefa, R.A., Dardir, S.N., Radwan, M.I., Capua, I. & Cattoli, G. (2013). H9N2 influenza A virus circulates in H5N1 endemically infected poultry population in Egypt. Influenza and Other Respiratory Viruses, 7, 240–243. doi: 10.1111/j.1750-2659.2012.00399.x
  • Müller, H., Mundt, E., Eterradossi, N. & Islam, M.R. (2012). Current status of vaccines against infectious bursal disease. Avian Pathology, 41, 133–139. doi: 10.1080/03079457.2012.661403
  • Munch, D., Hohlstein, L. & Sevoian, M. (1978). In vitro establishment of Marek's disease herpesvirus-transformed productive and nonproductive lymphoblastoid cell lines. Infection and Immunity, 20, 315–318.
  • Muramatsu, M. & Homma, M. (1980). Trypsin action on the growth of Sendai virus in tissue culture cells. V. An activating enzyme for Sendai virus in the chorioallantoic fluid of the embryonated chicken egg. Microbiology and Immunology, 24, 113–122. doi: 10.1111/j.1348-0421.1980.tb00569.x
  • Nagai, Y., Shimokata, K., Yoshida, T., Hamaguchi, M., Iinuma, M., Maeno, K., Matsumoto, T., Klenk, H.D. & Rott, R. (1979). The spread of a pathogenic and an apathogenic strain of Newcastle disease virus in the chick embryo as depending on the protease sensitivity of the virus glycoproteins. The Journal of General Virology, 45, 263–272. doi: 10.1099/0022-1317-45-2-263
  • Nair, V. (2005). Evolution of Marek's disease – a paradigm for incessant race between the pathogen and the host. The Veterinary Journal, 170, 175–183. doi: 10.1016/j.tvjl.2004.05.009
  • Narrod, C., Zinsstag, J. & Tiongco, M. (2012). A one health framework for estimating the economic costs of zoonotic diseases on society. EcoHealth, 9, 150–162. doi: 10.1007/s10393-012-0747-9
  • Normile, D. (2008). Rinderpest: driven to extinction. Science, 319, 1606–1609. doi: 10.1126/science.319.5870.1606
  • O'Brien, D. & Zanker, S. (2007). Animal vaccination and the veterinary pharmaceutical industry. Revue Scientifique Et Technique (International Office of Epizootics), 26, 471–477.
  • OIE. (2008). Chapter 2.3.12. Infectious bursal disease (Gumboro disease), OIE Terrestrial Manual, 549–565.
  • OIE. (2010). Chapter 2.3.13. Marek's disease, OIE Terrestrial Manual, 1–11.
  • OIE. (2013a). Chapter 2.3.14. Newcastle disease, OIE Terrestrial Manual, 1–19.
  • OIE. (2013b). Chapter 2.3.2. Avian infectious bronchitis, OIE Terrestrial Manual, 1–15.
  • OIE. (2014). Chapter 2.3.4. Avian Influenza, OIE Terrestrial Manual, 436–454.
  • Osterrieder, N. & Schumacher, D. (2002). A Continuous Cell Line for the Production of Vaccines. WO/2003/066093 A1.
  • Palya, V., Kiss, I., Tatár-Kis, T., Mató, T., Felföldi, B. & Gardin, Y. (2012). Advancement in vaccination against Newcastle disease: recombinant HVT NDV provides high clinical protection and reduces challenge virus shedding with the absence of vaccine reactions. Avian Diseases, 56, 282–287. doi: 10.1637/9935-091511-Reg.1
  • Palya, V., Zolnai, A., Benyeda, Z., Kovács, E., Kardi, V. & Mató, T. (2009). Short beak and dwarfism syndrome of mule duck is caused by a distinct lineage of goose parvovirus. Avian Pathology, 38, 175–180. doi: 10.1080/03079450902737839
  • Parks, R.J. (2005). Adenovirus protein IX: a new look at an old protein. Molecular Therapy: The Journal of the American Society of Gene Therapy, 11, 19–25. doi: 10.1016/j.ymthe.2004.09.018
  • Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45. doi: 10.1093/nar/29.9.e45
  • Promkuntod, N., Wickramasinghe, I.N.A., de Vrieze, G., Gröne, A. & Verheije, M.H. (2013). Contributions of the S2 spike ectodomain to attachment and host range of infectious bronchitis virus. Virus Research, 177, 127–137. doi: 10.1016/j.virusres.2013.09.006
  • Ren, Z., Lu, Z., Wang, L., Huo, Z., Cui, J., Zheng, T., Dai, Q., Chen, C., Qin, M., Chen, M. & Yang, R. (2015). Rapid production of a H9N 2 influenza vaccine from MDCK cells for protecting chicken against influenza virus infection. Applied Microbiology and Biotechnology, 99, 2999–3013. doi: 10.1007/s00253-015-6406-7
  • Richard, M., de Graaf, M. & Herfst, S. (2014). Avian influenza A viruses: from zoonosis to pandemic. Future Virology, 9, 513–524. doi: 10.2217/fvl.14.30
  • Roth, S. & Kaaden, O.R. (1985). Use of chicken cell line LSCC-H32 for titration of animal viruses and exogenous chicken interferon. Applied and Environmental Microbiology, 49, 634–636.
  • Rott, R., Reinacher, M., Orlich, M. & Klenk, H.D. (1980). Cleavability of hemagglutinin determines spread of avian influenza viruses in the chorioallantoic membrane of chicken embryo. Archives of Virology, 65, 123–133. doi: 10.1007/BF01317323
  • Salminen, A., Paimela, T., Suuronen, T. & Kaarniranta, K. (2008). Innate immunity meets with cellular stress at the IKK complex: regulation of the IKK complex by HSP70 and HSP90. Immunology Letters, 117, 9–15. doi: 10.1016/j.imlet.2007.12.017
  • Sambo, E., Bettridge, J., Dessie, T., Amare, A., Habte, T., Wigley, P. & Christley, R.M. (2015). Participatory evaluation of chicken health and production constraints in Ethiopia. Preventive Veterinary Medicine, 118, 117–127. doi: 10.1016/j.prevetmed.2014.10.014
  • Sandig, V. & Jordan, I. (2008). Immortalized Avian Cell Lines for Virus Production. European Patent EP 1939281 A1, pp. 1–49. Priority Date 3 November 2003.
  • Schettler, C.H. (1973). Virus hepatitis of geese. 3. Properties of the causal agent. Avian Pathology, 2, 179–193. doi: 10.1080/03079457309353795
  • Schumacher, D., Tischer, B.K., Reddy, S.M. & Osterrieder, N. (2001). Glycoproteins E and I of Marek's disease virus serotype 1 are essential for virus growth in cultured cells. Journal of Virology, 75, 11307–11318. doi: 10.1128/JVI.75.23.11307-11318.2001
  • Sehgal, R.N.M. (2010). Deforestation and avian infectious diseases. The Journal of Experimental Biology, 213, 955–960. doi: 10.1242/jeb.037663
  • Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N. & Kawaoka, Y. (2006). Avian flu: influenza virus receptors in the human airway. Nature, 440, 435–436. doi: 10.1038/440435a
  • Sjaak de Wit, J.J., Cook, J.K.A. & van der Heijden, H.M.J.F. (2011). Infectious bronchitis virus variants: a review of the history, current situation and control measures. Avian Pathology, 40, 223–235. doi: 10.1080/03079457.2011.566260
  • Sonnberg, S., Webby, R.J. & Webster, R.G. (2013). Natural history of highly pathogenic avian influenza H5N1. Virus Research, 178, 63–77. doi: 10.1016/j.virusres.2013.05.009
  • Sun, Y. & Liu, J. (2015). H9N2 influenza virus in China: a cause of concern. Protein & Cell, 6, 18–25. doi: 10.1007/s13238-014-0111-7
  • Tatár-Kis, T., Mató, T., Markos, B. & Palya, V. (2004). Phylogenetic analysis of Hungarian goose parvovirus isolates and vaccine strains. Avian Pathology, 33, 438–444. doi: 10.1080/03079450410001724067
  • Tscherne, D.M. & García-Sastre, A. (2011). Virulence determinants of pandemic influenza viruses. The Journal of Clinical Investigation, 121, 6–13. doi: 10.1172/JCI44947
  • Tulman, E.R., Afonso, C.L., Lu, Z., Zsak, L., Rock, D.L. & Kutish, G.F. (2000). The genome of a very virulent Marek's disease virus. Journal of Virology, 74, 7980–7988. doi: 10.1128/JVI.74.17.7980-7988.2000
  • Uscher-Pines, L., Barnett, D.J., Sapsin, J.W., Bishai, D.M. & Balicer, R.D. (2008). A systematic analysis of influenza vaccine shortage policies. Public Health, 122, 183–191. doi: 10.1016/j.puhe.2007.06.005
  • Veits, J., Weber, S., Stech, O., Breithaupt, A., Gräber, M., Gohrbandt, S., Bogs, J., Hundt, J., Teifke, J.P., Mettenleiter, T.C. & Stech, J. (2012). Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype. Proceedings of the National Academy of Sciences of the United States of America, 109, 2579–2584. doi: 10.1073/pnas.1109397109
  • Vellinga, J., Van der Heijdt, S. & Hoeben, R.C. (2005). The adenovirus capsid: major progress in minor proteins. The Journal of General Virology, 86, 1581–1588. doi: 10.1099/vir.0.80877-0
  • Vos, A., Un, H., Hampson, K., De Balogh, K., Aylan, O., Freuling, C.M., Müller, T., Fooks, A.R. & Johnson, N. (2014). Bovine rabies in Turkey: patterns of infection and implications for costs and control. Epidemiology and Infection, 142, 1925–1933. doi: 10.1017/S0950268813002811
  • Wan, H. & Perez, D.R. (2007). Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. Journal of Virology, 81, 5181–5191. doi: 10.1128/JVI.02827-06
  • Wan, H., Sorrell, E.M., Song, H., Hossain, M.J., Ramirez-Nieto, G., Monne, I., Stevens, J., Cattoli, G., Capua, I., Chen, L.-M., Donis, R.O., Busch, J., Paulson, J.C., Brockwell, C., Webby, R., Blanco, J., Al-Natour, M.Q. & Perez, D.R. (2008). Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. PloS One, 3, e2923. doi: 10.1371/journal.pone.0002923
  • Wang, X.-J. (2011). Heat-shock protein 70 is associated with the entry of Marek's disease virus into fibroblast. Acta Virologica, 55, 189–194. doi: 10.4149/av_2011_03_189
  • Witter, R.L., Calnek, B.W., Buscaglia, C., Gimeno, I.M. & Schat, K.A. (2005). Classification of Marek's disease viruses according to pathotype: philosophy and methodology. Avian Pathology, 34, 75–90. doi: 10.1080/03079450500059255
  • World Health Organization. (1998). Reverse transcriptase activity in chicken-cell derived vaccine. Weekly Epidemiological Record/Health Section of the Secretariat of the League of Nations, 73, 209–212.
  • World Health Organization. (2013). Research priorities for the environment, agriculture and infectious diseases of poverty. World Health Organization Technical Report Series, i–xiii, 1–125.
  • Yamaguchi, T., Kaplan, S.L., Wakenell, P. & Schat, K.A. (2000). Transactivation of latent Marek's disease herpesvirus genes in QT35, a quail fibroblast cell line, by herpesvirus of turkeys. Journal of Virology, 74, 10176–10186. doi: 10.1128/JVI.74.21.10176-10186.2000
  • Zamarin, D. & Palese, P. (2012). Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiology, 7, 347–367. doi: 10.2217/fmb.12.4
  • Zhang, Y., Buckles, E. & Whittaker, G.R. (2012). Expression of the C-type lectins DC-SIGN or L-SIGN alters host cell susceptibility for the avian coronavirus, infectious bronchitis virus. Veterinary Microbiology, 157, 285–293. doi: 10.1016/j.vetmic.2012.01.011
  • Zhao, Y., Kurian, D., Xu, H., Petherbridge, L., Smith, L.P., Hunt, L. & Nair, V. (2009). Interaction of Marek's disease virus oncoprotein Meq with heat-shock protein 70 in lymphoid tumour cells. The Journal of General Virology, 90, 2201–2208. doi: 10.1099/vir.0.012062-0
  • Zhirnov, O.P., Ovcharenko, A.V. & Bukrinskaya, A.G. (1985). Myxovirus replication in chicken embryos can be suppressed by aprotinin due to the blockage of viral glycoprotein cleavage. The Journal of General Virology, 66, 1633–1638. doi: 10.1099/0022-1317-66-7-1633
  • Zinsstag, J., Schelling, E., Roth, F., Bonfoh, B., de Savigny, D. & Tanner, M. (2007). Human benefits of animal interventions for zoonosis control. Emerging Infectious Diseases, 13, 527–531. doi: 10.3201/eid1304.060381

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.