6,290
Views
49
CrossRef citations to date
0
Altmetric
Review Article

Development of innate immunity in chicken embryos and newly hatched chicks: a disease control perspective

, , , , &
Pages 288-310 | Received 27 Oct 2018, Accepted 03 Apr 2019, Published online: 19 Jun 2019

References

  • Abdul-Cader, M.S., Palomino-Tapia, V., Amarasinghe, A., Ahmed-Hassan, H., De Silva Senapathi, U. & Abdul-Careem, M.F. (2018). Hatchery vaccination against poultry viral diseases: potential mechanisms and limitations. Viral Immunology, 31, 23–33.
  • Abdul-cader, M.S., De Silva Senapathi, U., Ahmed-Hassan, H., Sharif, S. & Abdul-Careem, M.F. (2019). Single stranded (ss)RNA-mediated antiviral response against infectious laryngotracheitis virus infection. BMC Microbiology, 19, 34.
  • Abdul-Careem, M.F., Hunter, D.B., Lambourne, M.D., Barta, J. & Sharif, S. (2007a). Ontogeny of cytokine gene expression in the chicken spleen. Poultry Science, 86, 1351–1355.
  • Abdul-Careem, M.F., Hunter, B.D., Parvizi, P., Haghighi, H.R., Thanthrige-Don, N. & Sharif, S. (2007b). Cytokine gene expression patterns associated with immunization against Marek’s disease in chickens. Vaccine, 25, 424–432.
  • Achanta, M., Sunkara, L.T., Dai, G., Bommineni, Y.R., Jiang, W. & Zhang, G. (2012). Tissue expression and developmental regulation of chicken cathelicidin antimicrobial peptides. Journal of Animal Science and Biotechnology, 3, 15.
  • Akira, S., Takeda, K. & Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology, 2, 675–680.
  • Akira, S. (2009). Pathogen recognition by innate immunity and its signaling. Proceedings of the Japan Academy, Series B, 85, 143–156.
  • Alexopoulou, L., Czopik Holt, A., Medzhitov, R. & Flavell, R.A. (2001). Recognition of double-stranded RNA and activation of NF-kappa B by Toll-like receptor 3. Nature, 413, 732–738.
  • Alkie, T.N., Taha-Abdelaziz, K., Barjesteh, N., Bavananthasivam, J., Hodgins, D.C. & Sharif, S. (2017). Characterization of innate responses induced by PLGA encapsulated- and soluble TLR ligands in vitro and in vivo in chickens. PLOS ONE, 12, e0169154.
  • Alkie, T.N., Yitbarek, A., Taha-abdelaziz, K., Astill, J. & Sharif, S. (2018). Characterization of immunogenicity of avian influenza antigens encapsulated in PLGA nanoparticles following mucosal and subcutaneous delivery in chickens. PLoS One, 13, e0206324.
  • Alter, G., Malenfant, J.M. & Altfeld, M. (2004). CD107a as a functional marker for the identification of natural killer cell activity. Journal of Immunological Methods, 294, 15–22.
  • Alvarez, A.J., Endsley, J.J., Werling, D. & Mark Estes, D. (2009). WC1(+) gamma delta T cells indirectly regulate chemokine production during mycobacterium bovis infection in SCID-bo mice. Transboundary and Emerging Diseases, 56, 275–284.
  • Arbour, N.C., Lorenz, E., Schutte, B.C., Zabner, J., Kline, J.N., Jones, M., Watt, J.L. & Schwartz, D.A. (2000). TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nature Genetics, 25, 187–191.
  • Arenson, E.B., Epstein, M.B. & Seeger, R.C. (1979). Monocyte subsets in neonates and children. Pediatrics, 64, 740–744.
  • Arsenault, R.J., Kogut, M.H. & He, H. (2013). Combined CpG and poly I:C stimulation of monocytes results in unique signaling activation not observed with the individual ligands. Cellular Signalling, 25, 2246–2254.
  • Balic, A., Garcia-Morales, C., Vervelde, L., Gilhooley, H., Sherman, A., Garceau, V., Gutowska, M.W., Burt, D.W., Kaiser, P., Hume, D.A. & Sang, H.M. (2014). Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage. Development, 141, 3255–3265.
  • Bar-Shira, E. & Friedman, A. (2006). Development and adaptations of innate immunity in the gastrointestinal tract of the newly hatched chick. Developmental and Comparative Immunology, 30, 930–941.
  • Bar-Shira, E., Sklan, D. & Friedman, A. (2003). Establishment of immune competence in the avian GALT during the immediate post-hatch period. Developmental and comparative immunology, 27, 147–157.
  • Barbera, M.R.W., Jerry, R., Aldridge, J., Websterb, R.G. & Magora, K.E. (2010). Association of RIG-I with innate immunity of ducks to influenza. Proceedings of the National Academy of Sciences, 107, 5913–5918.
  • Barjesteh, N., Shojadoost, B., Brisbin, J.T., Emam, M., Hodgins, D.C., Nagy, É & Sharif, S. (2015). Reduction of avian influenza virus shedding by administration of toll-like receptor ligands to chickens. Vaccine, 33, 4843–4849.
  • Barjesteh, N., Brisbin, J., Behboudi, S., Nagy, É & Sharif, S. (2015). Induction of antiviral responses against avian influenza virus in embryonated chicken eggs with toll-like receptor ligands. Viral Immunology, 28, 192–200.
  • Bavananthasivam, J., Alkie, T.N., Matsuyama-Kato, A., Hodgins, D.C. & Sharif, S. (2017). Characterization of innate responses induced by in ovo administration of encapsulated and free forms of ligands of toll-like receptor 4 and 21 in chicken embryos. Research in Veterinary Science, S0034-S5288, 30530–30541.
  • Bavananthasivam, J., Alkie, T.N., Astill, J., Abdul-Careem, M.F., Wootton, S.K., Behboudi, S., Yitbarek, A. & Sharif, S. (2018a). In ovo administration of Toll-like receptor ligands encapsulated in PLGA nanoparticles impede tumor development in chickens infected with Marek’s disease virus. Vaccine, 36, 4070–4076.
  • Bavananthasiva, J., Read, L., Astill, J., Yitbarek, A., Alkie, T.N., Abdul-Careem, F.M., Behboudi, S., Wootton, S.K. & Sharif, S. (2018b). The effects of in ovo administration of encapsulated Toll-like receptor 21 ligand as an adjuvant with Marek’s disease vaccine. Scientific Reports, 8, 16370.
  • Benfield, C.T.O., Lyall, J.W. & Tiley, L.S. (2010). The cytoplasmic location of chicken Mx is not the determining factor for its lack of antiviral activity. PLoS One, 5, e12151.
  • Benko, S., Magalhaes, J.G., Philpott, D.J. & Girardin, S.E. (2010). NLRC5 limits the activation of inflammatory pathways. The Journal of Immunology, 185, 1681–1691.
  • Berndt, A., Pieper, J. & Methner, U. (2006). Circulating γδ T cells in response to Salmonella enterica serovar Enteritidis exposure in chickens. Infection and Immunity, 74, 3967–3978.
  • Berndt, A., Wilhelm, A., Jugert, C., Pieper, J., Sachse, K. & Methner, U. (2007). Chicken cecum immune response to Salmonella enterica serovars of different levels of invasiveness. Infection and Immunity, 75, 5993–6007.
  • Bordin, A.I., Liu, M., Nerren, J.R., Buntain, S.L., Brake, C.N., Kogut, M.H. & Cohen, N.D. (2012). Neutrophil function of neonatal foals is enhanced in vitro by CpG oligodeoxynucleotide stimulation. Veterinary Immunology and Immunopathology, 145, 290–297.
  • Brinkmann, V. (2004). Neutrophil extracellular traps kill bacteria. Science, 303, 1532–1535.
  • Brogden, K.A., Ackermann, M., McCray, P.B. & Tack, B.F. (2003). Antimicrobial peptides in animals and their role in host defences. International Journal of Antimicrobial Agents, 22, 465–478.
  • Brownlie, R., Zhu, J., Allan, B., Mutwiri, G.K., Babiuk, L.A., Potter, A. & Griebel, P. (2009). Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. Molecular Immunology, 46, 3163–3170.
  • Brownlie, R. & Allan, B. (2011). Avian Toll-like receptors. Cell and Tissue Research, 343, 121–130.
  • Bublot, M., Pritchard, N., Le Gros, F.-X. & Goutebroze, S. (2007). Use of a vectored vaccine against infectious bursal disease of chickens in the face of high-titred maternally derived antibody. Journal of Comparative Pathology, 137, (Suppl. 1), S81–S84.
  • Bucy, R.P., Chen, C.L., Cihak, J., Lösch, U. & Cooper, M.D. (1988). Avian T cells expressing gamma delta receptors localize in the splenic sinusoids and the intestinal epithelium. Journal of Immunology, 141, 2200–2205.
  • Chalifour, A. (2004). Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers alpha-defensin production. Blood, 104, 1778–1783.
  • Chang, G., Liu, X., Ma, T., Xu, L., Wang, H., Li, Z., Guo, X., Xu, Q. & Chen, G. (2015). A mutation in the NLRC5 promoter limits NF-κB signaling after Salmonella enteritidis infection in the spleen of young chickens. Gene, 568, 117–123.
  • Chiang, H.-I., Zhou, H., Raudsepp, T., Jesudhasan, P.R. & Zhu, J.J. (2007). Chicken CD69 and CD94/NKG2-like genes in a chromosomal region syntenic to mammalian natural killer gene complex. Immunogenetics, 59, 603–611.
  • Choi, J.H., Kim, G.B. & Cha, C.J. (2014). Spatial heterogeneity and stability of bacterial community in the gastrointestinal tracts of broiler chickens. Poultry Science, 93, 1942–1950.
  • Chu, H., Pazgier, M., Jung, G., Nuccio, S.-P., Castillo, P.A., de Jong, M.F., Winter, M.G., Winter, S.E., Wehkamp, J., Shen, B., Salzman, N.H., Underwood, M.A., Tsolis, R.M., Young, G.M., Lu, W., Lehrer, R.I., Baumler, A.J. & Bevins, C.L. (2012). Human-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science, 337, 477–481.
  • Ciraci, C., Tuggle, C.K., Wannemuehler, M.J., Nettleton, D. & Lamont, S.J. (2010). Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella-derived endotoxin. BMC Genomics, 11, 545.
  • Cohen, N.D., Bourquin, J.R., Bordin, A.I., Kuskie, K.R., Brake, C.N., Weaver, K.B., Liu, M., Felippe, M.J.B. & Kogut, M.H. (2014). Intramuscular administration of a synthetic CpG-oligodeoxynucleotide modulates functional responses of neutrophils of neonatal foals. PLoS ONE, 9, e109865.
  • Coltey, M., Bucy, R.P., Chen, C.H., Cihak, J., Lösch, U., Char, D., Le Douarin, N.M. & Cooper, M.D. (1989). Analysis of the first two waves of thymus homing stem cells and their T cell progeny in chick-quail chimeras. Journal of Experimental Medicine, 170, 543–557.
  • Cooper, M.D., Chen, C.L., Bucy, R.P. & Thompson, C.B. (1991). Avian T cell ontogeny. Advances in Immunology, 50, 87–117.
  • Cooper, M.A., Fehniger, T.A. & Caligiuri, M.A. (2001). The biology of human Natural Killer-cell subsets. Trends in Immunology, 22, 633–640.
  • Crhanova, M., Hradecka, H., Faldynova, M., Matulova, M., Havlickova, H., Sisak, F. & Rychlik, I. (2011). Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar Enteritidis infection. Infection and Immunity, 79, 2755–2763.
  • Cui, J., Sofer, L., Cloud, S.S. & Burnside, J. (2004). Patterns of gene expression in the developing chick thymus. Developmental Dynamics, 229, 480–488.
  • Cuperus, T., Coorens, M., van Dijk, A. & Haagsman, H.P. (2013). Avian host defense peptides. Developmental and Comparative Immunology, 41, 352–369.
  • Cuperus, T., van Dijk, A., Dwars, R.M. & Haagsman, H.P. (2016). Localization and developmental expression of two chicken host defense peptides: cathelicidin-2 and avian β-defensin 9. Developmental and Comparative Immunology, 61, 48–59.
  • Cuperus, T., Kraaij, M.D., Zomer, A.L., van Dijk, A. & Haagsman, P. (2018). Immunomodulation and effects on microbiota after in ovo administration of chicken cathelicidin-2. PloS One, 13, e0198188.
  • Dalloul, R.a., Lillehoj, H.S., Okamura, M., Xie, H., Min, W., Ding, X. & Heckert, R.a. (2004). In vivo effects of CpG oligodeoxynucleotide on Eimeria infection in chickens. Avian Diseases, 48, 783–790.
  • Dar, A., Potter, A., Tikoo, S., Gerdts, V., Lai, K., Babiuk, L.a. & Mutwiri, G. (2009). CpG oligodeoxynucleotides activate innate immune response that suppresses infectious bronchitis virus replication in chicken embryos. Avian Diseases, 53, 261–267.
  • Dar, A., Tikoo, S., Potter, A., Babiuk, L.a., Townsend, H., Gerdts, V. & Mutwiri, G. (2014). CpG-ODNs induced changes in cytokine/chemokines genes expression associated with suppression of infectious bronchitis virus replication in chicken lungs. Veterinary Immunology and Immunopathology, 160, 209–217.
  • Dar, A., Tipu, M., Townsend, H., Potter, A., Gerdts, V. & Tikoo, S. (2015). Administration of poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) and avian beta defensin as adjuvants in inactivated inclusion body hepatitis virus and its hexon protein-based experimental vaccine formulations in chickens. Avian Diseases, 59, 518–524.
  • Davidson, D.J., Currie, A.J., Reid, G.S.D., Bowdish, D.M.E., MacDonald, K.L., Ma, R.C., Hancock, R.E.W. & Speert, D.P. (2004). The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. The Journal of Immunology, 172, 1146–1156.
  • De Kleer, I., Willems, F., Lambrecht, B. & Goriely, S. (2014). Ontogeny of myeloid cells. Frontiers in Immunology, 5, 423.
  • De Wit, D., Olislagers, V., Goriely, S., Vermeulen, F., Wagner, H., Goldman, M. & Willems, F. (2004). Blood plasmacytoid dendritic cell responses to CpG oligodeoxynucleotides are impaired in human newborns. Blood, 103, 1030–1032.
  • Deist, M.S., Gallardo, R.A., Bunn, D.A., Dekkers, J.C.M., Zhou, H. & Lamont, S.J. (2017). Resistant and susceptible chicken lines show distinctive responses to Newcastle disease virus infection in the lung transcriptome. BMC Genomics, 18, 989.
  • Del Cacho, E., Gallego, M., Lillehoj, H.S., López-Bernard, F. & Sánchez-Acedo, C. (2009). Avian follicular and interdigitating dendritic cells: isolation and morphologic, phenotypic, and functional analyses. Veterinary Immunology and Immunopathology, 129, 66–75.
  • Delves, P.J. & Roitt, I.M. (2000). The immune system. New England Journal of Medicine, 343, 37–49.
  • Derache, C., Esnault, E., Bonsergent, C., Le Vern, Y., Quéré, P. & Lalmanach, A.-C. (2009). Differential modulation of β-defensin gene expression by Salmonella enteritidis in intestinal epithelial cells from resistant and susceptible chicken inbred lines. Developmental and Comparative Immunology, 33, 959–966.
  • Diao, J., Winter, E., Cantin, C., Chen, W., Xu, L., Kelvin, D., Phillips, J. & Cattral, M.S. (2006). In situ replication of immediate dendritic cell (DC) precursors contributes to conventional DC homeostasis in lymphoid tissue. The Journal of Immunology, 176, 7196–7206.
  • Dóra, D., Fejszák, N., Goldstein, A.M., Minkó, K. & Nagy, N. (2017). Ontogeny of ramified CD45 cells in chicken embryo and their contribution to bursal secretory dendritic cells. Cell and Tissue Research, 368, 353–370.
  • Dunon, D., Cooper, M.D. & Imhof, B.A. (1993). Thymic origin of embryonic intestinal gamma/delta T cells. Journal of Experimental Medicine, 177, 257–263.
  • Fach, S.J., Olivier, A., Gallup, J.M., Waters, T.E., Ackermann, M.R., Lehmkuhl, H.D. & Sacco, R.E. (2010). Differential expression of cytokine transcripts in neonatal and adult ovine alveolar macrophages in response to respiratory syncytial virus or toll-like receptor ligation. Veterinary Immunology and Immunopathology, 136, 55–64.
  • Fagerland, J.A. & Arp, L.H. (1993). Structure and development of bronchus-associated lymphoid tissue in conventionally reared broiler chickens. Avian Diseases, 37, 10–18.
  • Feng, Z., Lian, T., Huang, Y., Zhu, Q. & Liu, Y. (2013). Expression pattern of genes of RLR-mediated antiviral pathway in different-breed chicken response to Marek’s disease virus infection. BioMed Research International, 2013, 419256.
  • Fenzl, L., Göbel, T.W. & Neulen, M. (2017). γδ T cells represent a major spontaneously cytotoxic cell population in the chicken. Delopmental and Comparative Immunology, 73, 175–183.
  • Fierer, J. (2001). Polymorphonuclear leukocytes and innate immunity to Salmonella infections in mice. Microbes and Infection, 3, 1233–1237.
  • Gallego, M., del Cacho, E., Lopez-Bernad, F. & Bascuas, J.A. (1997). Identification of avian dendritic cells in the spleen using a monoclonal antibody specific for chicken follicular dendritic cells. The Anatomical Record, 249, 81–85.
  • Ganz, T. (2003). The role of antimicrobial peptides in innate immunity. Integrative and Comparative Biology, 43, 300–304.
  • Garceau, V., Smith, J., Paton, I.R., Davey, M., Fares, M.A., Sester, D.P., Burt, D.W. & Hume, D.A. (2010). Pivotal advance: avian colony-stimulating factor 1 (CSF-1), interleukin-34 (IL-34), and CSF-1 receptor genes and gene products. Journal of Leukocyte Biology, 87, 753–764.
  • Gasiorowski, R.E., Ju, X., Hart, D.N.J. & Clark, G.J. (2013). CD300 molecule regulation of human dendritic cell functions. Immunology Letters, 149, 93–100.
  • Genovese, L.L. (2000). Longevity of augmented phagocytic activity of heterophils in neonatal chickens following administration of Salmonella enteritidis-immune lymphokines to chickens. Avian Pathology, 29, 117–122.
  • Genovese, K.J., He, H., Lowry, V.K., Nisbet, D.J. & Kogut, M.H. (2007). Dynamics of the avian inflammatory response to Salmonella following administration of the Toll-like receptor 5 agonist flagellin. FEMS Immunology and Medical Microbiology, 51, 112–117.
  • Genovese, K.J., He, H., Swaggerty, C.L. & Kogut, M.H. (2013). The avian heterophil. Developmental and Comparative Immunology, 41, 334–340.
  • Gibbons, D.L., Haque, S.F.Y., Silberzahn, T., Hamilton, K., Langford, C., Ellis, P., Carr, R. & Hayday, A.C. (2009). Neonates harbour highly active gammadelta T cells with selective impairments in preterm infants. European Journal of Immunology, 39, 1794–1806.
  • Gimeno, I.M., Faiz, N.M., Cortes, A.L., Barbosa, T., Villalobos, T. & Pandiri, A.R. (2015). In ovo vaccination with turkey herpesvirus hastens maturation of chicken embryo immune responses in specific-pathogen-free chickens. Avian Diseases, 59, 375–383.
  • Gimeno, I.M., Glaize, A. & Cortes, A.L. (2018). Effect of Marek’s disease vaccines on interferon and toll like receptors when administered in ovo. Veterinary Immunology and Immunopathology, 201, 62–66.
  • Göbel, T.W.F., Chen, C.-L.H., Shrimpf, J., Grossi, C.E., Bernot, A., Bucy, R.P., Auffray, C. & Cooper, M.D. (1994). Characterization of avian natural killer cells and their intracellular CD3 protein complex. European Journal of Immunology, 24, 1685–1691.
  • Göbel, T.W.F. (2000). Isolation and analysis of natural killer cells in chickens. In K.S. Campbell & M. Colonna (Eds.), Natural killer cell protocols (pp. 337–345). New Jersey: Humana Press.
  • Göbel, T.W., Kaspers, B. & Stangassinger, M. (2001). NK and T cells constitute two major, functionally distinct intestinal epithelial lymphocyte subsets in the chicken. International Immunology, 13, 757–762.
  • Gomez Perdiguero, E., Klapproth, K., Schulz, C., Busch, K., Azzoni, E., Crozet, L., Garner, H., Trouillet, C., de Bruijn, M.F., Geissmann, F. & Rodewald, H.-R. (2015). Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 518, 547–551.
  • Gomis, S., Babiuk, L., Allan, B., Willson, P., Waters, E., Ambrose, N., Hecker, R. & Potter, A. (2004). Protection of neonatal chicks against a lethal challenge of Escherichia coli using DNA containing cytosine-phosphodiester-guanine motifs. Avian Diseases, 48, 813–822.
  • Goriely, S., Vincart, B., Stordeur, P., Vekemans, J., Willems, F., Goldman, M. & De Wit, D. (2001). Deficient IL-12(p35) gene expression by dendritic cells derived from neonatal monocytes. The Journal of Immunology, 166, 2141–2146.
  • Gou, Z., Liu, R., Zhao, G., Zheng, M., Li, P., Wang, H., Zhu, Y. & Wen, J. (2012). Epigenetic modification of TLRs in leukocytes is associated with increased susceptibility to Salmonella enteritidis in chickens. PLoS One, 7, e33627.
  • Griffith, J.W., Sokol, C.L. & Luster, A.D. (2014). Chemokines and chemokine receptors : positioning cells for host defense and immunity. Annual Review of Immunology, 32, 659–702.
  • Guilmot, A., Hermann, E., Braud, V.M., Carlier, Y. & Truyens, C. (2011). Natural killer cell responses to infections in early life. Journal of Innate Immunity, 3, 280–288.
  • Gunawardana, T., Foldvari, M., Zachar, T., Popowich, S., Chow-Lockerbie, B., Ivanova, M.V., Tikoo, S., Kurukulasuriya, S., Willson, P. & Gomis, S. (2015). Protection of neonatal broiler chickens following in ovo delivery of oligodeoxynucleotides containing CpG motifs (CpG-ODN) formulated with carbon nanotubes or liposomes. Avian Diseases, 59, 31–37.
  • Gunawardana, T., Ahmed, K.A., Goonewardene, K., Popowich, S., Kurukulasuriya, S., Karunarathna, R., Gupta, A., Lockerbie, B., Foldvari, M., Tikoo, S.K., Willson, P. & Gomis, S. (2019). Synthetic CpG-ODN rapidly enriches immune compartments in neonatal chicks to induce protective immunity against bacterial infections. Scientific Reports, 9, 341.
  • Haas, W., Pereira, P. & Tonegawa, S. (1993). Gamma/delta cells. Annual Review of Immunology, 11, 637–685.
  • Hansell, C., Zhu, X.W., Brooks, H., Sheppard, M., Withanage, S., Maskell, D. & McConnell, I. (2007). Unique features and distribution of the chicken CD83+ cell. The Journal of Immunology, 179, 5117–5125.
  • Haury, M., Kasahara, Y., Schaal, S., Bucy, R.P. & Cooper, M.D. (1993). Intestinal T lymphocytes in the chicken express an integrin-like antigen. European Journal of Immunology, 23, 313–319.
  • He, H., Genovese, K.J., Lowry, V.K., Nisbet, D.J. & Kogut, M.H. (2006). Response of nitric oxide production to CpG oligodeoxynucleotides in turkey and chicken peripheral blood monocytes. FEMS Immunology and Medical Microbiology, 48, 99–106.
  • He, H., MacKinnon, K.M., Genovese, K.J., Nerren, J.R., Swaggerty, C.L., Nisbet, D.J. & Kogut, M.H. (2009). Chicken scavenger receptors and their ligand-induced cellular immune responses. Molecular Immunology, 46, 2218–2225.
  • He, H., Genovese, K.J., Swaggerty, C.L., MacKinnon, K.M. & Kogut, M.H. (2012). Co-stimulation with TLR3 and TLR21 ligands synergistically up-regulates Th1-cytokine IFN-γ and regulatory cytokine IL-10 expression in chicken monocytes. Developmental and Comparative Immunology, 36, 756–760.
  • Hedges, J.F., Lubick, K.J. & Jutila, M.A. (2005). Gamma delta T cells respond directly to pathogen-associated molecular patterns. The Journal of Immunology, 174, 6045–6053.
  • Hennessy, C. & McKernan, D.P. (2016). Epigenetics and innate immunity: the ‘unTolld’ story. Immunology and Cell Biology, 94, 631–639.
  • Higgs, R., Cormican, P., Cahalane, S., Allan, B., Lloyd, A.T., Meade, K., James, T., Lynn, D.J., Babiuk, L.A. & O‘farrelly, C. (2006). Induction of a novel chicken toll-like receptor following Salmonella enterica serovar Typhimurium infection. Infection and Immunity, 74, 1692–1698.
  • Hornung, V., Ellegast, J., Kim, S., Brzózka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K., Schlee, M., Endres, S. & Hartmann, G. (2006). 5’-Triphosphate RNA is the ligand for RIG-I. Science, 314, 994–997.
  • Hu, T., Wu, Z., Vervelde, L., Rothwell, L., Hume, D.A. & Kaiser, P. (2016). Functional annotation of the T-cell immunoglobulin mucin family in birds. Immunology, 148, 287–303.
  • Hu, T., Wu, Z., Bush, S.J., Freem, L., Vervelde, L., Summers, K.M., Hume, D.A., Balic, A. & Kaiser, P. (2019). Characterization of subpopulations of chicken mononuclear phagocytes that express TIM4 and CSF1R. The Journal of Immunology, 202, 1186–1199.
  • Hughes, S., Haynes, A. & Regan, M.O. (2001). Identification, mapping, and phylogenetic analysis of three novel chicken CC chemokines. Immunogenetics, 53, 674–683.
  • Igyártó, B.-Z., Lackó, E., Oláh, I. & Magyar, A. (2006). Characterization of chicken epidermal dendritic cells. Immunology, 119, 278–288.
  • Iqbal, M., Philbin, V.J. & Smith, A.L. (2005). Expression patterns of chicken Toll-like receptor mRNA in tissues, immune cell subsets and cell lines. Veterinary Immunology and Immunopathology, 104, 117–127.
  • Italiani, P. & Boraschi, D. (2014). From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Frontiers in Immunology, 5, 514.
  • Jansen, C.A., van de Haar, P.M., van Haarlem, D., van Kooten, P., de Wit, S., van Eden, W., Viertlböck, B.C., Göbel, T.W. & Vervelde, L. (2010). Identification of new populations of chicken natural killer (NK) cells. Developmental and Comparative Immunology, 34, 759–767.
  • Jansen, C.A., van Haarlem, D.A., Sperling, B., van Kooten, P.J., de Vries, E., Viertlboeck, B.C., Vervelde, L. & Göbel, T.W. (2016). Identification of an activating chicken Ig-like receptor recognizing avian influenza viruses. The Journal of Immunology, 197, 4696–4703.
  • Jenkins, K.A., Lowenthal, J.W., Kimpton, W. & Bean, A.G.D. (2009). The in vitro and in ovo responses of chickens to TLR9 subfamily ligands. Developmental and Comparative Immunology, 33, 660–667.
  • Jeurissen, S.H.M. & Janse, E.M. (1989). Distribution and embryonic function of non-lymphoid cells in liver and spleen of avian, and adult chickens. In B.S. Bhogal & G. Koch (Eds.), Avian Immunology Research Group meeting (pp. 149–157). New York: A.R.Liss.
  • Jeurissen, S.H.M., Claassen, E. & Janse, E.M. (1992). Histological and functional differentiation of non-lymphoid cells in the chicken spleen. Immunology, 77, 75–80.
  • Jeurissen, S.H., Janse, E.M., Lehrbach, P.R., Haddad, E.E., Avakian, A. & Whitfill, C.E. (1998). The working mechanism of an immune complex vaccine that protects chickens against infectious bursal disease. Immunology, 95, 494–500.
  • Jiao, L., Han, X., Wang, S., Fan, Y., Yang, M., Qiu, H. & Yang, X. (2009). Imprinted DC mediate the immune-educating effect of early-life microbial exposure. European Journal of Immunology, 39, 469–480.
  • Juul-Madsen, H.R., Viertlboeck, B., Härtle, S., Smith, A.L. & Gobel, T.W. (2014). Innate immune responses. In K.A. Schat, B. Kaspers & P. Kaiser (Eds.), Avian Immunology 2nd ed. (pp. 121–147). Paris: Academic Press.
  • Kaiser, P., Poh, T., Rothwell, L., Avery, S., Balu, S., Pathania, U., Hughes, S., Goodchild, M., Morrell, S., Watson, M., Bumstead, N., Kaufman, J. & Young, J. (2005). A genomic analysis of chicken cytokines and chemokines. Journal of Interferon and Cytokine Research, 25, 467–484.
  • Kaiser, P. & Staeheli, P. (2014). Avian cytokines and chemokines. In K.A. Schat, B. Kaspers & P. Kaiser (Eds.), Avian immunology (2nd ed.) (pp. 189–204). Paris: Academic Press.
  • Kameka, A.M., Haddadi, S., Kim, D.S., Cork, S.C. & Abdul-Careem, M.F. (2014). Induction of innate immune response following infectious bronchitis corona virus infection in the respiratory tract of chickens. Virology, 450451, 114–121.
  • Kannaki, T.R., Reddy, M.R., Verma, P.C. & Shanmugam, M. (2015). Differential Toll-like receptor (TLR) mRNA expression patterns during chicken embryological development. Animal Biotechnology, 26, 130–135.
  • Karpala, A.J., Stewart, C., McKay, J., Lowenthal, J.W. & Bean, A.G.D. (2011). Characterization of chicken Mda5 activity: regulation of IFN-β in the absence of RIG-I functionality. The Journal of Immunology, 186, 5397–5405.
  • Karpala, A.J., Bagnaud-Baule, A., Goossens, K.E., Lowenthal, J.W. & Bean, A.G.D. (2012). Ontogeny of the interferon system in chickens. Journal of Reproductive Immunology, 94, 169–174.
  • Kasahara, Y., Chen, C.H. & Cooper, M.D. (1993). Growth requirements for avian gamma delta T cells include exogenous cytokines, receptor ligation and in vivo priming. European Journal of Immunology, 23, 2230–2236.
  • Kato, H., Takeuchi, O., Mikamo-satoh, E., Hirai, R., Kawai, T., Matsushita, K., Hiiragi, A., Dermody, T.S., Fujita, T. & Akira, S. (2008). Length-dependent recognition of double- stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation–associated gene 5. The Journal of Experimental Medicine, 205, 1601–1610.
  • Keestra, A.M., de Zoete, M.R., Bouwman, L.I. & van Putten, J.P.M. (2010). Chicken TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9. The Journal of Immunology, 185, 460–467.
  • Keestra, A.M., de Zoete, M.R., Bouwman, L.I., Vaezirad, M.M. & van Putten, J.P.M. (2013). Unique features of chicken Toll-like receptors. Developmental and Comparative Immunology, 41, 316–323.
  • Khatri, M. & Sharma, J.M. (2009). Response of embryonic chicken lymphoid cells to infectious bursal disease virus. Veterinary Immunology and Immunopathology, 127, 316–324.
  • Kim, W.H., Lillehoj, H.S., Lim, Y., Min, W., Sullivan, Y.B., Kakach, L. & Labresh, J.W. (2017). Development and characterization of mouse monoclonal antibodies reactive with chicken CXCLi2. Developmental and Comparative Immunology, 72, 30–36.
  • Ko, J., Jin, H., Asano, A., Takada, A., Ninomiya, A., Kida, H., Hokiyama, H., Ohara, M., Tsuzuki, M., Nishibori, M., Mizutani, M. & Watanabe, T. (2002). Polymorphisms and the differential antiviral activity of the chicken Mx gene. Genome Research, 12, 595–601.
  • Kobayashi, N., Karisola, P., Peña-Cruz, V., Dorfman, D.M., Jinushi, M., Umetsu, S.E., Butte, M.J., Nagumo, H., Chernova, I., Zhu, B., Sharpe, A.H., Ito, S., Dranoff, G., Kaplan, G.G., Casasnovas, J.M., Umetsu, D.T., DeKruyff, R.H. & Freeman, G.J. (2007). TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity, 27, 927–940.
  • Kogut, M.H., Tellez, G.I., McGruder, E.D., Hargis, B.M., Williams, J.D., Corrier, D.E. & DeLoach, J.R. (1994). Heterophils are decisive components in the early responses of chickens to Salmonella enteritidis infections. Microbial Pathogenesis, 16, 141–151.
  • Kogut, M.H., Iqbal, M., He, H., Philbin, V., Kaiser, P. & Smith, A. (2005). Expression and function of toll-like receptors in chicken heterophils. Developmental and Comparative Immunology, 29, 791–807.
  • Kogut, M.H., Swaggerty, C., He, H., Pevzner, I. & Kaiser, P. (2006). Toll-like receptor agonists stimulate differential functional activation and cytokine and chemokine gene expression in heterophils isolated from chickens with differential innate responses. Microbes and Infection, 8, 1866–1874.
  • Kogut, M.H., Genovese, K.J., He, H. & Kaiser, P. (2008). Flagellin and lipopolysaccharide up-regulation of IL-6 and CXCLi2 gene expression in chicken heterophils is mediated by ERK1/2-dependent activation of AP-1 and NF-kappaB signaling pathways. Innate Immunity, 14, 213–222.
  • Kogut, M.H., Chiang, H.I., Swaggerty, C.L., Pevzner, I.Y. & Zhou, H. (2012). Gene expression analysis of Toll-like receptor pathways in heterophils from genetic chicken lines that differ in their susceptibility to Salmonella enteritidis. Frontiers in Genetics, 3, 121.
  • Kogut, M.H., Genovese, K.J., Nerren, J.R. & He, H. (2012). Effects of avian triggering receptor expressed on myeloid cells (TREM-A1) activation on heterophil functional activities. Developmental and Comparative Immunology, 36, 157–165.
  • Koskela, K., Arstila, T.P. & Lassila, O. (1998). Costimulatory function of CD28 in avian gamma delta T cells is evolutionarily conserved. Scandinavian Journal of Immunology, 48, 635–641.
  • Kotenko, S.V., Gallagher, G., Baurin, V.V., Lewis-Antes, A., Shen, M., Shah, N.K., Langer, J.A., Sheikh, F., Dickensheets, H. & Donnelly, R.P. (2003). IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nature Immunology, 4, 69–77.
  • Kranich, J. & Krautler, N.J. (2016). How follicular dendritic cells shape the B-cell antigenome. Frontiers in Immunology, 7, 225.
  • Krautler, N.J., Kana, V., Kranich, J., Tian, Y., Perera, D., Lemm, D., Schwarz, P., Armulik, A., Browning, J.L., Tallquist, M., Buch, T., Oliveira-martins, J.B., Zhu, C., Hermann, M., Wagner, U., Brink, R., Heikenwalder, M. & Aguzzi, A. (2012). Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell, 150, 194–206.
  • Krumbiegel, D., Zepp, F. & Meyer, C.U. (2007). Combined Toll-like receptor agonists synergistically increase production of inflammatory cytokines in human neonatal dendritic cells. Human Immunology, 68, 813–822.
  • Kubota, T., Wang, J., Göbel, T.W., Hockett, R.D., Cooper, M.D. & Chen, C.H. (1999). Characterization of an avian (Gallus gallus domesticus) TCR alpha delta gene locus. Journal of Immunology, 163, 3858–3866.
  • Lammers, A., Wieland, W.H., Kruijt, L., Jansma, A., Straetemans, T., Schots, A., den Hartog, G. & Parmentier, H.K. (2010). Successive immunoglobulin and cytokine expression in the small intestine of juvenile chicken. Developmental and Comparative Immunology, 34, 1254–1262.
  • Lanier, L.L. (2005). NK cell recognition. Annual Review of Immunology, 23, 225–274.
  • Laursen, A.M.S., Kulkarni, R.R., Taha-Abdelaziz, K., Plattner, B.L., Read, L.R. & Sharif, S. (2018). Characterizaton of gamma delta T cells in Marek’s disease virus (Gallid herpesvirus 2) infection of chickens. Virology, 522, 56–64.
  • Lechmann, M., Berchtold, S., Hauber, J. & Steinkasserer, A. (2002). CD83 on dendritic cells: more than just a marker for maturation. Trends in Immunology, 23, 273–275.
  • Lee, S.-H., Lillehoj, H.S., Jang, S.I., Hong, Y.-H., Min, W., Lillehoj, E.P., Yancey, R.J. & Dominowski, P. (2010). Embryo vaccination of chickens using a novel adjuvant formulation stimulates protective immunity against Eimeria maxima infection. Vaccine, 28, 7774–7778.
  • Leveque, G., Forgetta, V., Morroll, S., Smith, A.L., Bumstead, N., Barrow, P., Loredo-Osti, J.C., Morgan, K. & Malo, D. (2003). Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica Serovar Typhimurium infection in chickens. Infection and Immunity, 71, 1116–1124.
  • Levy, O. (2007). Innate immunity of the newborn: basic mechanisms and clinical correlates. Nature Reviews Immunology, 7, 379–390.
  • Li, B., Fu, D., Zhang, Y., Xu, Q. & Ni, L. (2012). Partial antiviral activities of the Asn631 chicken Mx against Newcastle disease virus and vesicular stomatitis virus. Molecular Biology Reports, 39, 8415–8424.
  • Liang, J., Yin, Y., Qin, T. & Yang, Q. (2015). Chicken bone marrow-derived dendritic cells maturation in response to infectious bursal disease virus. Veterinary Immunology and Immunopathology, 164, 51–55.
  • Lillehoj, H.S. & Chai, J. (1988). Comparative natural killer cell activities of thymic, bursal, splenic and intestinal intraepithelial lymphocytes of chickens. Developmental and Comparative Immunology, 12, 629–643.
  • Lin, S.J. & Yan, D.C. (2000). ICAM-1 (CD54) expression on T lymphocytes and natural killer cells from umbilical cord blood: regulation with interleukin-12 and interleukin-15. Cytokines, Cellular and Molecular Therapy, 6, 161–164.
  • Lissner, M.M., Thomas, B.J., Wee, K., Tong, A.-J., Kollmann, T.R. & Smale, S.T. (2015). Age-related gene expression differences in monocytes from human neonates, young adults, and older adults. PLoS ONE, 10, e0132061.
  • Liu, M., Liu, T., Bordin, A., Nerren, J. & Cohen, N. (2009). Activation of foal neutrophils at different ages by CpG oligodeoxynucleotides and Rhodococcus equi. Cytokine, 48, 280–289.
  • Lutz, M.B. (2004). IL-3 in dendritic cell development and function: a comparison with GM-CSF and IL-4. Immunobiology, 209, 79–87.
  • Mabbott, N.A., Donaldson, D.S., Ohno, H., Williams, I.R. & Mahajan, A. (2013). Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunology, 6, 666–677.
  • MacKinnon, K.M., He, H., Swaggerty, C.L., McReynolds, J.L., Genovese, K.J., Duke, S.E., Nerren, J.R. & Kogut, M.H. (2009). In ovo treatment with CpG oligodeoxynucleotides decreases colonization of Salmonella enteriditis in broiler chickens. Veterinary Immunology and Immunopathology, 127, 371–375.
  • Meade, K.G., Higgs, R., Lloyd, A.T., Giles, S. & O’Farrelly, C. (2009). Differential antimicrobial peptide gene expression patterns during early chicken embryological development. Developmental and Comparative Immunology, 33, 516–524.
  • Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nature Reviews Immunology, 1, 135–145.
  • Melchers, F. (2010). The ontogeny of the cells of the innate and the adaptive immune system. In S.H.E. Kaufmann, B.T. Rouse & D.L. Sacks (Eds.), The immune response to infection (1st ed.) (pp. 21–33). Washington, DC: ASM Press.
  • Melvan, J.N., Bagby, G.J., Welsh, D.A., Nelson, S. & Zhang, P. (2010). Neonatal sepsis and neutrophil insufficiencies. International Reviews of Immunology, 29, 315–348.
  • Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. (2013). The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annual Review of Immunology, 31, 563–604.
  • Miller, M.C. & Mayo, K.H. (2017). Chemokines from a structural perspective. International Journal of Molecular Sciences, 18, 2088.
  • Min, W., Kim, W.H., Lillehoj, E.P. & Lillehoj, H.S. (2013). Recent progress in host immunity to avian coccidiosis: IL-17 family cytokines as sentinels of the intestinal mucosa. Developmental and Comparative Immunology, 41, 418–428.
  • Moretta, A. (2002). Natural killer cells and dendritic cells: rendezvous in abused tissues. Nature Reviews Immunology, 2, 957–965.
  • Moretta, L., Ferlazzo, G., Bottino, C., Vitale, M., Pende, D., Mingari, M.C. & Moretta, A. (2006). Effector and regulatory events during natural killer-dendritic cell interactions. Immunological Reviews, 214, 219–228.
  • Muniz-Junqueira, M.I., Peçanha, L.M.F., da Silva-Filho, V.L., de Almeida Cardoso, M.C. & Tosta, C.E. (2003). Novel microtechnique for assessment of postnatal maturation of the phagocytic function of neutrophils and monocytes. Clinical and Diagnostic Laboratory Immunology, 10, 1096–1102.
  • Nagai, Y., Garrett, K.P., Ohta, S., Bahrun, U., Kouro, T., Akira, S., Takatsu, K. & Kincade, P.W. (2006). Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity, 24, 801–812.
  • Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., Yoshida, N., Kikutani, H. & Kishimoto, T. (1996). Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 382, 635–638.
  • Nagy, N., Magyar, A., Tóth, M. & Oláh, I. (2004). Origin of the bursal secretory dendritic cell. Anatomy and Embryology, 208, 97–107.
  • Nagy, N. & Oláh, I. (2009). Locally applied testosterone is a novel method to influence the development of the avian bursa of Fabricius. Journal of Immunological Methods, 343, 97–102.
  • Nagy, N., Bódi, I. & Oláh, I. (2016). Avian dendritic cells: phenotype and ontogeny in lymphoid organs. Developmental and Comparative Immunology, 58, 47–59.
  • Negash, T., Al-Garib, S.O. & Gruys, E. (2004). Comparison of in ovo and post-hatch vaccination with particular reference to infectious bursal disease. A review. Veterinary Quarterly, 26, 76–87.
  • Negash, T., Liman, M. & Rautenschlein, S. (2013). Mucosal application of cationic poly(D,L-lactide-co-glycolide) microparticles as carriers of DNA vaccine and adjuvants to protect chickens against infectious bursal disease. Vaccine, 31, 3656–3662.
  • Neulen, M.-L. & Göbel, T.W. (2012). Chicken CD56 defines NK cell subsets in embryonic spleen and lung. Developmental and Comparative Immunology, 38, 410–415.
  • Palm, N.W. & Medzhitov, R. (2009). Pattern recognition receptors and control of adaptive immunity. Immunological Reviews, 227, 221–233.
  • Patel, B.a., Gomis, S., Dar, A., Willson, P.J., Babiuk, L.a., Potter, A., Mutwiri, G. & Tikoo, S.K. (2008). Oligodeoxynucleotides containing CpG motifs (CpG-ODN) predominantly induce Th1-type immune response in neonatal chicks. Developmental and Comparative Immunology, 32, 1041–1049.
  • Petersen, H., Matrosovich, M., Pleschka, S. & Rautenschlein, S. (2012). Replication and adaptive mutations of low pathogenic avian influenza viruses in tracheal organ cultures of different avian species. PloS one, 7, e42260.
  • Pieper, J., Methner, U. & Berndt, A. (2008). Heterogeneity of avian gamma delta T cells. Veterinary Immunology and Immunopathology, 124, 241–252.
  • Pieper, J., Methner, U. & Berndt, A. (2011). Characterization of avian γδ T-cell subsets after Salmonella enterica serovar Typhimurium infection of chicks. Infection and Immunity, 79, 822–829.
  • Pieper, J., Locke, M., Ruzaike, G., Voigt, S., Methner, U. & Berndt, A. (2017). In vitro and in vivo generation of heterophil extracellular traps after Salmonella exposure. Veterinary Immunology and Immunopathology, 188, 1–11.
  • Poh, T.Y., Pease, J., Young, J.R., Bumstead, N. & Kaiser, P. (2008). Re-evaluation of chicken CXCR1 determines the true gene structure: CXCLi1 (K60) and CXCLi2 (CAF/interleukin-8) are ligands for this receptor. Journal of Biological Chemistry, 283, 16408–16415.
  • Price, S.J., Sopp, P., Howard, C.J. & Hope, J.C. (2007). Workshop cluster 1+ gamma delta T-cell receptor T cells from calves express high levels of interferon-gamma in response to stimulation with interleukin-12 and -18. Immunology, 120, 57–65.
  • Pridans, C., Lillico, S., Whitelaw, B. & Hume, D.A. (2014). Lentiviral vectors containing mouse Csf1r control elements direct macrophage-restricted expression in multiple species of birds and mammals. Molecular Therapy – Methods and Clinical Development, 1, 14010.
  • Quéré, P., Pierre, J., Hoang, M.-D., Esnault, E., Domenech, J., Sibille, P. & Dimier-Poisson, I. (2013). Presence of dendritic cells in chicken spleen cell preparations and their functional interaction with the parasite Toxoplasma gondii. Veterinary Immunology and Immunopathology, 153, 57–69.
  • Qureshi, M.A., Heggen, C.L. & Hussain, I. (2000). Avian macrophage: effector functions in health and disease. Developmental and Comparative Immunology, 24, 103–119.
  • Radsak, M.P., Salih, H.R., Rammensee, H.G. & Schild H. (2004). Triggering receptor expressed on myeloid cells-1 in neutrophil inflammatory responses: differential regulation of activation and survival. The Journal of Immunology, 172, 4956–4963.
  • Ramasamy, K.T., Verma, P. & Reddy, M.R. (2012). Differential gene expression of antimicrobial peptides β defensins in the gastrointestinal tract of Salmonella serovar Pullorum infected broiler chickens. Veterinary Research Communications, 36, 57–62.
  • Ratcliffe, M.J.H. & Haertle, S. (2014). B cells, the bursa of Fabricius and the generation of antibody repertoires. In K.A. Schat, B. Kaspers & P. Kaiser (Eds.), Avian Immunology (2nd ed.) (pp. 65–89). Paris: Academic Press.
  • Raz, E. & Mahabaleshwar, H. (2009). Chemokine signaling in embryonic cell migration: a fisheye view. Development, 136, 1223–1229.
  • Read, L.R., Cumberbatch, J.A., Buhr, M.M., Bendall, A.J. & Sharif, S. (2005). Cloning and characterization of chicken stromal cell derived factor-1. Developmental and Comparative Immunology, 29, 143–152.
  • Reemers, S.S., Groot Koerkamp, M.J., Holstege, F.C., van Eden, W. & Vervelde, L. (2009a). Cellular host transcriptional responses to influenza A virus in chicken tracheal organ cultures differ from responses in in vivo infected trachea. Veterinary Immunology and Immunopathology, 132, 91–100.
  • Reemers, S.S., van Haarlem, D.A., Groot Koerkamp, M.J. & Vervelde, L. (2009b). Differential gene-expression and host-response profiles against avian influenza virus within the chicken lung due to anatomy and airflow. Journal of General Virology, 90, 2134–2146.
  • Reemers, S.S., VanLeenen, D., Groot Koerkamp, M.J., van Haarlem, D., van de Haar, P., van Eden, W. & Vervelde, L. (2010a). Early host responses to avian influenza A virus are prolonged and enhanced at transcriptional level depending on maturation of the immune system. Molecular Immunology, 47, 1675–1685.
  • Reemers, S.S., Veldhuizen, E.J.A., Fleming, C., van Haarlem, D.A., Haagsman, H. & Vervelde, L. (2010b). Transcriptional expression levels of chicken collectins are affected by avian influenza A virus inoculation. Veterinary Microbiology, 141, 379–384.
  • Reuter, A., Soubies, S., Härtle, S., Schusser, B., Kaspers, B., Staeheli, P. & Rubbenstroth, D. (2014). Antiviral activity of lambda interferon in chickens. Journal of Virology, 88, 2835–2843.
  • Robbins, S.H., Walzer, T., Dembélé, D., Thibault, C., Defays, A., Bessou, G., Xu, H., Vivier, E., Sellars, M., Pierre, P., Sharp, F.R., Chan, S., Kastner, P. & Dalod, M. (2008). Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biology, 9, R17.
  • Rogers, S.L., Viertlboeck, B.C., Göbel, T.W. & Kaufman, J. (2008). Avian NK activities, cells and receptors. Seminars in Immunology, 20, 353–360.
  • Ruby, T., Whittaker, C., Withers, D.R., Chelbi-Alix, M.K., Morin, V., Oudin, A., Young, J.R. & Zoorob, R. (2006). Transcriptional profiling reveals a possible role for the timing of the inflammatory response in determining susceptibility to a viral infection. Journal of Virology, 80, 9207–9216.
  • Saeed, S., Quintin, J., Kerstens, H.H.D., Rao, N.A., Aghajanirefah, A., Matarese, F., Cheng, S., Ratter, J., Berentsen, K., van der Ent, M.A., Sharifi, N., Janssen-Megens, E.M.,Ter Huurne, M., Mandoli, A., van Schaik, T., Ng, A., Burden, F., Downes, K., Frontini, M., Kumar, V., Giamarellos-Bourboulis, E.J., Ouwehand, W.H., van der Meer, J.W., Joosten, L.A., Wijmenga, C., Martens, J.H., Xavier, R.J., Logie, C., Netea, M.G. & Stunnenberg, H.G. (2014). Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science, 345, 1251086.
  • Sanchez-Garcia, F.J. & McCormack, W.T. (1996). Chicken γδ T cells. Current Topics in Microbiology and Immunology, 212, 55–69.
  • Sarfraz, M., Suleman, M., Tikoo, S.K., Wheler, C., Potter, A.A., Gerdts, V. & Dar, A. (2017). Immune responses to in ovo vaccine formulations containing inactivated fowl adenovirus 8b with poly[di(sodium carboxylatoethylphenoxy)]phosphazene (PCEP) and avian beta defensin as adjuvants in chickens. Vaccine, 35, 981–986.
  • Sarson, A.J., Abdul-Careem, M.F., Zhou, H. & Sharif, S. (2006). Transcriptional analysis of host responses to Marek’s disease viral infection. Viral Immunology, 19, 747–758.
  • Sasmono, R.T., Oceandy, D., Pollard, J.W., Tong, W., Pavli, P., Wainwright, B.J., Ostrowski, M.C., Himes, S.R. & Hume, D.A. (2003). A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood, 101, 1155–1163.
  • Saunders, P.M., Vivian, J.P., O’Connor, G.M., Sullivan, L.C., Pymm, P., Rossjohn, J. & Brooks, A.G. (2015). A bird’s eye view of NK cell receptor interactions with their MHC class I ligands. Immunological Reviews, 267, 148–166.
  • Schilling, M.A., Katani, R., Memari, S., Cavanaugh, M., Buza, J., Basu, J.R., Mpenda, F.N., Deist, M.S., Lamont, S.J. & Kapur, V. (2018). Transcriptional innate immune response of the developing chicken embryo to Newcastle disease virus infection. Frontiers in Genetics, 9, 61.
  • Schoggins, J.W., Wilson, S.J., Panis, M., Murphy, M.Y., Jones, C.T., Bieniasz, P. & Rice, C.M. (2011). A diverse range of gene products are effectors of the type I interferon antiviral response. Nature, 472, 481–485.
  • Schokker, D., Hoekman, A.J.W., Smits, M.A. & Rebel, J.M.J. (2009). Gene expression patterns associated with chicken jejunal development. Developmental and Comparative Immunology, 33, 1156–1164.
  • Sekellick, M.J., Biggers, W.J. & Marcus, P.I. (1990). Development of the interferon system. I. In chicken cells development in ovo continues on time in vitro. In Vitro Cellular and Developmental Biology, 26, 997–1003.
  • Setta, A.M., Barrow, P.A., Kaiser, P. & Jones, M.A. (2012). Early immune dynamics following infection with Salmonella enterica serovars Enteritidis, Infantis, Pullorum and Gallinarum: cytokine and chemokine gene expression profile and cellular changes of chicken cecal tonsils. Comparative Immunology, Microbiology and Infectious Diseases, 35, 397–410.
  • Sharma, J.M. & Burmester, B.R. (1982). Resistance to Marek’s disease at hatching in chickens vaccinated as embryos with the turkey herpesvirus. Avian Diseases, 26, 134–149.
  • Sharma, J.M., Lee, L.F. & Wakenell, P.S. (1984). Comparative viral, immunologic, and pathologic responses of chickens inoculated with herpesvirus of turkeys as embryos or at hatch. The American Journal of Veterinary Research, 45, 1619–1623.
  • Shinkai, H., Tanaka, M., Morozumi, T., Eguchi-ogawa, T., Okumura, N., Muneta, Y., Awata, T. & Uenishi, H. (2006). Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR5, and TLR6 genes. Immunogenetics, 58, 324–330.
  • Shortman, K. & Liu, Y. (2002). Mouse and human dendritic cell subtypes. Nature Reviews Immunology, 2, 151–161.
  • Sivori, S., Falco, M., Chiesa, M.D., Carlomagno, S., Vitale, M., Moretta, L. & Moretta, A. (2004). CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proceedings of the National Academy of Sciences, 101, 10116–10121.
  • Skevaki, C. & Pararas, M. (2015). Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases. Clinical and Experimental Immunology, 180, 165–177.
  • Sokale, A.O., Zhai, W., Pote, L.M., Williams, C.J. & Peebles, E.D. (2017). Effects of coccidiosis vaccination administered by in ovo injection on Ross 708 broiler performance through 14 days of post-hatch age. Poultry Science, 96, 2546–2551.
  • Solana, R., Tarazona, R., Gayoso, I., Lesur, O., Dupuis, G. & Fulop, T. (2012). Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Seminars in Immunology, 24, 331–341.
  • Solano-Gálvez, S.G., Tovar-Torres, S.M., Tron-Gómez, M.S., Weiser-Smeke, A.E., Álvarez-Hernández, D.A., Franyuti-Kelly, G.A., Tapia-Moreno, M., Ibarra, A., Gutiérrez-Kobeh, L. & Vázquez-López, R. (2018). Human dendritic cells: ontogeny and their subsets in health and disease. Medical Sciences, 6, 88.
  • Sowder, J.T., Chen, C.L., Ager, L.L., Chan, M.M. & Cooper, M.D. (1988). A large subpopulation of avian T cells express a homologue of the mammalian T gamma/delta receptor. Journal of Experimental Medicine, 167, 315–322.
  • Sperling, B., Viertlboeck, B.C. & Göbel, T.W. (2015). Chicken CD300a homolog is found on B lymphocytes, various leukocytes populations and binds to phospholipids. Developmental and Comparative Immunology, 50, 121–128.
  • Staines, K., Young, J.R. & Butter, C. (2013). Expression of chicken DEC205 reflects the unique structure and function of the avian immune system. PLoS ONE, 8, e51799.
  • Stålhammar, M.E., Douhan Håkansson, L., Jonzon, A. & Sindelar, R. (2017). Differential neutrophil chemotactic response towards IL-8 and bacterial N-formyl peptides in term newborn infants. Upsala Journal of Medical Sciences, 122, 35–42.
  • Sun, C.-M. (2003). Ontogeny and innate properties of neonatal dendritic cells. Blood, 102, 585–591.
  • Sutton, K., Costa, T., Alber, A., Bryson, K., Borowska, D., Balic, A., Kaiser, P., Stevens, M. & Vervelde, L. (2018). Visualisation and characterisation of mononuclear phagocytes in the chicken respiratory tract using CSF1R-transgenic chickens. Veterinary Research, 49, 104.
  • Swaggerty, C.L., Kogut, M.H., Ferro, P.J., Rothwell, L., Pevzner, I.Y. & Kaiser, P. (2004). Differential cytokine mRNA expression in heterophils isolated from Salmonella-resistant and -susceptible chickens. Immunology, 113, 139–148.
  • Swaggerty, C.L., Pevzner, I.Y., Kaiser, P. & Kogut, M.H. (2008). Profiling pro-inflammatory cytokine and chemokine mRNA expression levels as a novel method for selection of increased innate immune responsiveness. Veterinary Immunology and Immunopathology, 126, 35–42.
  • Swaggerty, C.L., He, H., Genovese, K.J., Duke, S.E. & Kogut, M.H. (2012). Loxoribine pretreatment reduces Salmonella enteritidis organ invasion in 1-day-old chickens. Poultry Science, 91, 1038–1042.
  • Swiggard, W., Mirza, A., Nussenzweig, M. & Steinman, R. (1995). DEC-205, a 205-kDa protein abundant on mouse dendritic cells and thymic epithelium that is detected by the monoclonal antibody NLDC-145: purification, characterization, and N-terminal amino acid sequence. Cellular Immunology, 165, 302–311.
  • Syrjänen, R., Petrov, P., Glumoff, V., Fang, S., Salven, P., Savolainen, E.-R., Vainio, O. & Uchida, T. (2014). TIM-family molecules in embryonic hematopoiesis : fetal liver TIM-4 lo cells have myeloid potential. Experimental Hematology, 42, 230–240.
  • Taghavi, A., Allan, B., Mutwiri, G., Van Kessel, A., Willson, P., Babiuk, L., Potter, A. & Gomis, S. (2008). Protection of neonatal broiler chicks against Salmonella Typhimurium septicemia by DNA containing CpG motifs. Avian Diseases, 52, 398–406.
  • Taha-Abdelaziz, K., Alkie, T.N., Hodgins, D.C., Yitbarek, A., Shojadoost, B. & Sharif, S. (2017). Gene expression profiling of chicken cecal tonsils and ileum following oral exposure to soluble and PLGA-encapsulated CpG ODN, and lysate of Campylobacter jejuni. Veterinary Microbiology, 212, 67–74.
  • Taha-Abdelaziz, K., Hodgins, D.C., Alkie, T.N., Quinteiro-Filho, W., Yitbarek, A., Astill, J. & Sharif, S. (2018a). Oral administration of PLGA-encapsulated CpG ODN and Campylobacter jejuni lysate reduces cecal colonization by Campylobacter jejuni in chickens. Vaccine, 36, 388–394.
  • Taha-Abdelaziz, K., Yitbarek, A., Alkie, T.N., Hodgins, D.C., Read, L.R., Weese, J.S. & Sharif, S. (2018b). PLGA-encapsulated CpG ODN and Campylobacter jejuni lysate modulate Cecal microbiota composition in broiler chickens experimentally challenged with C. jejuni. Scientific Reports, 8, 12076.
  • Tang, Z., Xu, L., Shi, B., Deng, H., Lai, X., Liu, J. & Sun, Z. (2016). Oral administration of synthetic porcine beta-defensin-2 improves growth performance and cecal microbial flora and down-regulates the expression of intestinal toll-like receptor-4 and inflammatory cytokines in weaned piglets challenged with enterotoxigenic Escherichia coli. Animal Science Journal, 87, 1258–1266.
  • Thaiss, C.A., Zmora, N., Levy, M. & Elinav, E. (2016). The microbiome and innate immunity. Nature, 535, 65–74.
  • Thapa, S., Cader, M.S.A., Murugananthan, K., Nagy, E., Sharif, S., Czub, M. & Abdul-Careem, M.F. (2015). In ovo delivery of CpG DNA reduces avian infectious laryngotracheitis virus induced mortality and morbidity. Viruses, 7, 1832–1852.
  • Tian, F., Zhan, F., Vanderkraats, N.D., Hiken, J.F., Edwards, J.R., Zhang, H., Zhao, K. & Song, J. (2013). DNMT gene expression and methylome in Marek’s disease resistant and susceptible chickens prior to and following infection by MDV. Epigenetics, 8, 431–444.
  • Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B. & Nagasawa, T. (2004). Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity, 20, 707–718.
  • Torres, M. & García‐Andrés, C. (2010). Comparative expression pattern analysis of the highly conserved chemokines SDF1 and CXCL14 during amniote embryonic development. Developmental Dynamics, 239, 2769–2777.
  • Türkmen, M., Satar, M. & Atici, A. (2000). Neutrophil chemotaxis and random migration in preterm and term infants with sepsis. American Journal of Perinatology, 17, 107–112.
  • van Dijk, A., Tersteeg-Zijderveld, M.H.G., Tjeerdsma-van Bokhoven, J.L.M., Jansman, A.J.M., Veldhuizen, E.J.A. & Haagsman, H.P. (2009). Chicken heterophils are recruited to the site of Salmonella infection and release antibacterial mature cathelicidin-2 upon stimulation with LPS. Molecular Immunology, 46, 1517–1526.
  • van Haarlem, D.A., van Kooten, P.J.S., Rothwell, L., Kaiser, P. & Vervelde, L. (2009). Characterisation and expression analysis of the chicken interleukin-7 receptor alpha chain. Developmental and Comparative Immunology, 33, 1018–1026.
  • van Hemert, S., Hoekman, A.J.W., Smits, M.A. & Rebel, J.M.J. (2006). Early host gene expression responses to a Salmonella infection in the intestine of chickens with different genetic background examined with cDNA and oligonucleotide microarrays. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 1, 292–299.
  • Villani, A., Satija, R., Reynolds, G., Sarkizova, S., Shekhar, K., Fletcher, J., Griesbeck, M., Butler, A., Zheng, S., Lazo, S., Jardine, L., Dixon, D., Stephenson, E., Nilsson, E., Grundberg, I., McDonald, D., Filby, A., Li, W., De Jager, P.L., Rozenblatt-Rosen, O., Lane, A.A., Haniffa, M., Regev, A. & Hacohen, N. (2017). Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes and progenitors. Science, 356, 6335.
  • Viertlboeck, B.C., Habermann, F.A., Schmitt, R., Groenen, M.A.M., Du Pasquier, L. & Göbel, T.W. (2005). The chicken leukocyte receptor complex: a highly diverse multigene family encoding at least six structurally distinct receptor types. The Journal of Immunology, 175, 385–393.
  • Vu Manh, T.-P., Marty, H., Sibille, P., Le Vern, Y., Kaspers, B., Dalod, M., Schwartz-Cornil, I. & Quéré, P. (2014). Existence of conventional dendritic cells in Gallus gallus revealed by comparative gene expression profiling. The Journal of Immunology, 192, 4510–4517.
  • Weber, F.H., Genteman, K.C., Lemay, M.A., Lewis, D.O. & Evans, N.A. (2004). Immunization of broiler chicks by in ovo injection of infective stages of Eimeria. Poultry Science, 83, 392–399.
  • Wells, C.A., Ravasi, T., Faulkner, G.J., Carninci, P., Okazaki, Y., Hayashizaki, Y., Sweet, M., Wainwright, B.J. & Hume, D.A. (2003). Genetic control of the innate immune response. BMC Immunology, 4, 5.
  • Wells, L.L., Lowry, V.K., DeLoach, J.R. & Kogut, M.H. (1998). Age-dependent phagocytosis and bactericidal activities of the chicken heterophil. Developmental and Comparative Immunology, 22, 103–109.
  • Wesch, D., Peters, C., Oberg, H.-H., Pietschmann, K. & Kabelitz, D. (2011). Modulation of γδ T cell responses by TLR ligands. Cellular and Molecular Life Sciences, 68, 2357–2370.
  • Wigley, P. (2013). Immunity to bacterial infection in the chicken. Developmental and Comparative Immunology, 41, 413–417.
  • Wilkins, C. & Gale, M.J. (2010). Recognition of viruses by cytoplasmic sensors. Current Opinion in Immunology, 22, 41–47.
  • Wu, Z., Rothwell, L., Young, J.R., Kaufman, J., Butter, C. & Kaiser, P. (2010). Generation and characterization of chicken bone marrow-derived dendritic cells. Immunology, 129, 133–145.
  • Wu, Z. & Kaiser, P. (2011). Antigen presenting cells in a non-mammalian model system, the chicken. Immunobiology, 216, 1177–1183.
  • Wynn, J.L. & Levy, O. (2010). Role of innate host defenses in susceptibility to early-onset neonatal sepsis. Clinics in Perinatology, 37, 307–337.
  • Yacoub, H.A., El-Hamidy, S.M., Mahmoud, M.M., Baeshen, M.N., Almehdar, H.A., Uversky, V.N., Redwan, E.M., Al-Maghrabi, O.A. & Elazzazy, A.M. (2016). Biocidal activity of chicken defensin-9 against microbial pathogens. Biochemistry and Cell Biology, 94, 176–187.
  • Yacoub, H.A., Elazzazy, A.M., Abuzinadah, O.A.H., Al-Hejin, A.M., Mahmoud, M.M. & Harakeh, S.M. (2015). Antimicrobial activities of chicken β-defensin (4 and 10) peptides against pathogenic bacteria and fungi. Frontiers in Cellular and Infection Microbiology, 5, 36.
  • Yin, C.G., Zhang, C.S., Zhang, A.M., Qin, H.W., Wang, X.Q., Du, L.X. & Zhao, G.P. (2010). Expression analyses and antiviral properties of the Beijing-You and White Leghorn myxovirus resistance gene with different amino acids at position 631. Poultry Science, 89, 2259–2264.
  • Youngson, N.A. & Whitelaw, E. (2008). Transgenerational epigenetic effects. Annual Review of Genomics and Human Genetics, 9, 233–257.
  • Zenarruzabeitia, O., Vitallé, J., García-Obregón, S., Astigarraga, I., Eguizabal, C., Santos, S., Simhadri, V.R. & Borrego, F. (2016). The expression and function of human CD300 receptors on blood circulating mononuclear cells are distinct in neonates and adults. Scientific Reports, 6, 32693.
  • Zeshan, B., Mushtaq, M.H., Wang, X., Li, W. & Jiang, P. (2011). Protective immune responses induced by in ovo immunization with recombinant adenoviruses expressing spike (S1) glycoprotein of infectious bronchitis virus fused/co-administered with granulocyte-macrophage colony stimulating factor. Veterinary Microbiology, 148, 8–17.
  • Zhang, L., Liu, R., Ma, L., Wang, Y., Pan, B., Cai, J. & Wang, M. (2012). Eimeria tenella: expression profiling of Toll-like receptors and associated cytokines in the cecum of infected day-old and three-week old SPF chickens. Experimental Parasitology, 130, 442–448.
  • Zhou, D., Wang, J., Liu, W., Liu, R. & Pei, Y. (2008). Detection of CD2 expression in chicken hematogenic embryo yolk sac lymphoid cells prior to thymus genesis. Progress in Natural Science, 18, 1589–1594.
  • Zlotnik, A. & Yoshie, O. (2000). Chemokines: A new classification system and their role in immunity. Immunity, 12, 121–127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.