838
Views
1
CrossRef citations to date
0
Altmetric
Review articles

The influence of nutrition on intestinal disease with emphasis on coccidiosis

ORCID Icon &
Pages 504-520 | Received 20 May 2022, Accepted 03 Jul 2022, Published online: 08 Aug 2022

References

  • Abbas Hilmi, H.T., Surakka, A., Apajalahti, J. & Saris, P.E.J. (2007). Identification of the most abundant Lactobacillus species in the crop of 1- and 5-week-old broiler chickens. Applied and Environmental Microbiology, 73, 7867–7873.
  • Adedokun, S.A. & Olojede, O.C. (2019). Optimizing gastrointestinal integrity in poultry: the role of nutrients and feed additives. Frontiers in Veterinary Science, 5. doi:10.3389/fvets.2018.00348
  • Adhikari, P., Kiess, A., Adhikari, R. & Jha, R. (2020). An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. Journal of Applied Poultry Research, 29, 515–534.
  • Allen, P.C., Danforth, H.D., Augustine, P.C., Shirley, M. & Tomley, F. (1998). Dietary modulation of avian coccidiosis. International Journal for Parasitology, 28, 1131–1140.
  • Allen, P.C., Danforth, H.D. & Levander, O.A. (1996). Diets high in n-3 fatty acids reduce cecal lesion scores in chickens infected with Eimeria tenella. Poultry Science, 75, 179–185.
  • Apajalahti, J. (2005). Comparative gut microflora, metabolic challenges, and potential opportunities. Journal of Applied Poultry Research, 14, 1–10.
  • Apajalahti, J., Kettunnen, A. & Graham, H. (2004). Characteristics of the gastrointestinal micobial communities, with special reference to the chicken. Worlds Poultry Science Journal, 60, 223–232.
  • Apajalahti, J. & Rinttila, T. (2019). Assessing the complex ecology of intestinal microbiome. In G. Gonzalez-Ortiz (Ed.), The value of fibre -engaging the second brain for animal nutrition (pp. 281–295). Wageningen: Wageningen Academic Publishers.
  • Apajalahti, J. & Vienola, K. (2016). Interaction between chicken intestinal microbiota and protein digestion. Animal Feed Science and Technology, 221, 323–330.
  • Barton Mann, T. (1947). Chick rearing X. Roughage and protein as dietary factors influencing coccidiosis in chicks, with notes on the limitation of sulphamezathine in the control of coccidiosis. The Journal of Agricultural Science, 37, 145–151.
  • Bautil, A., Verspreet, J., Buyse, J., Goos, P., Bedford, M.R. & Courtin, C.M. (2020). Arabinoxylan-oligosaccharides kick-start arabinoxylan digestion in the aging broiler. Poultry Science, 99, 2555–2565.
  • Bautil, A., Verspreet, J., Courtin, C.M., Buyse, J., Goos, P. & Bedford, M.R. (2019). Age-related arabinoxylan hydrolysis and fermentation in the gastrointestinal tract of broilers fed wheat-based diets. Poultry Science, 98, 4606–4621.
  • Beach, J.R. & Corl, J.C. (1925). Studies in the control of avian coccidiosis. Poultry Science, 4, 83–93.
  • Bedford, A. & Gong, J. (2018). Implications of butyrate and its derivatives for gut health and animal production. Animal Nutrition, 4, 151–159.
  • Bedford, M.R. (1995). Mechanism of action and potential environmental benefits from the use of feed enzymes. Animal Feed Science & Technology, 53, 145–155.
  • Bedford, M.R. & Apajalahti, J.H. (2021). The role of feed enzymes in maintaining broiler intestinal health through modification of the microbiota. Journal of the Science of Food and Agriculture, 102, 1759–1770.
  • Bedford, M.R. & Masey O’Neill, H. (2012). Mythbusters-enzymes in the spotlight. In 23rd Annual Australian Poultry Science Symposium (pp. 112–119). Sydney: Australian Poultry Science Society.
  • Bedford, M.R., Parr, T., Persia, M.E., Batal, A.B. & Wyatt, C.L. (2007). Influence of dietary calcium and phytase source on litter moisture and mineral content. Poultry Science Abstracts, 86, 673–673.
  • Belli, S.I., Smith, N.C. & Ferguson, D.J.P. (2006). The coccidian oocyst: a tough nut to crack! Trends in Parasitology, 22, 416–423.
  • Benabdeljelil, K. & Ayachi, A. (1996). Evaluation of alternative litter materials for poultry. Journal of Applied Poultry Research, 5, 203–209.
  • Blake, D.P., Marugan-Hernandez, V. & Tomley, F.M. (2021). Spotlight on avian pathology: Eimeria and the disease coccidiosis. Avian Pathology, 50, 209–213.
  • Black, J.L., Williams, B.A., Roura, E. & Gidley, M.J. (2011). Physiological and metabolic regulation of feed intake. In R.J. van Barneveld (Ed.), Manipulating pig production XIII ed. pp. 118–128). Werribee: APSA.
  • Bortoluzzi, C., Lumpkins, B., Mathis, G.F., França, M., King, W.D., Graugnard, D.E., Dawson, K.A. & Applegate, T.J. (2019). Zinc source modulates intestinal inflammation and intestinal integrity of broiler chickens challenged with coccidia and Clostridium perfringens. Poultry Science, 98, 2211–2219.
  • Bortoluzzi, C., Rochell, S.J. & Applegate, T.J. (2018). Threonine, arginine, and glutamine: influences on intestinal physiology, immunology, and microbiology in broilers. Poultry Science, 97, 937–945.
  • Bortoluzzi, C., Vieira, B.S. & Applegate, T.J. (2020). Influence of dietary zinc, copper, and manganese on the intestinal health of broilers under Eimeria challenge. Frontiers in Veterinary Science, 7. doi:10.3389/fvets.2020.00013
  • Burrell, A., Tomley, F.M., Vaughan, S. & Marugan-Hernandez, V. (2020). Life cycle stages, specific organelles and invasion mechanisms of Eimeria species. Parasitology, 147, 263–278.
  • Chapman, H.D. (2014). Milestones in avian coccidiosis research: a review. Poultry Science, 93, 501–511.
  • Chaudhri, O., Small, C. & Bloom, S. (2006). Gastrointestinal hormones regulating appetite. Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences, 361, 1187–1209.
  • Classen, H.L., Apajalahti, J., Svihus, B. & Choct, M. (2016). The role of the crop in poultry production. World's Poultry Science Journal, 72, 459–472.
  • Colnago, G.L., Jensen, L.S. & Long, P.L. (1984a). The effect of feeding a semipurified diet to chickens infected with coccidia1. Poultry Science, 63, 639–646.
  • Colnago, G.L., Jensen, L.S. & Long, P.L. (1984b). Effect of selenium and vitamin E on the development of immunity to coccidiosis in chickens. Poultry Science, 63, 1136–1143.
  • Cowieson, A.J., Acamovic, T. & Bedford, M.R. (2006). Supplementation of corn-soy-based diets with and Eschericia coli-derived phytase: effects on broiler chick performance and the digestibility of amino acids and metabolizability of minerals and energy. Poultry Science, 85, 1389–1397.
  • Dalgaard, T.S., Briens, M., Engberg, R.M. & Lauridsen, C. (2018). The influence of selenium and selenoproteins on immune responses of poultry and pigs. Animal Feed Science and Technology, 238, 73–83.
  • Dalloul, R., Lillehoj, H., Shellem, T. & Doerr, J. (2003). Enhanced mucosal immunity against Eimeria acervulina in broilers fed a lactobacillus-based probiotic. Poultry Science, 82, 62–66.
  • Danforth, H.D., Allen, P.C. & Levander, O.A. (1997). The effect of high n-3 fatty acids diets on the ultrastructural development of Eimeria tenella. Parasitology Research, 83, 440–444.
  • Danicke, S., Jeroch, H., Bottcher, W., Bedford, M.R. & Simon, O. (1999). Effect of dietary fat type, pentosan level and xylanases on digestibility of fatty acids, liver lipids and vitamin E in broilers. Fett/Lipid, 101, S90–S100.
  • Danicke, S., Simon, O., Jeroch, H. & Bedford, M.R. (1997). Interactions between dietary fat type and xylanase supplementation when rye-based diets are fed to broiler chickens. 2. Performance, nutrient digestibility and the fat-soluble vitamin status of livers. British Poultry Science, 38, 546–556.
  • Dao, H.T., Moss, A.F., Bradbury, E.J., Swick, R.A. & Ravindran, V.R. (2022). Bone mineralisation status of broilers fed reduced-protein diets supplemented with L-arginine, guanidinoacetic acid and L-citrulline. Animal Production Science, 62, 539–553.
  • Dean, D.W., Bidner, T.D. & Southern, L.L. (2006). Glycine supplementation to low protein, amino acid-supplemented diets supports optimal performance of broiler chicks. Poultry Science, 85, 288–296.
  • Doran, D.J. & Farr, M.M. (1962). Excystation of the poultry coccidium, Eimeria acervulina. The Journal of Protozoology, 9, 154–161.
  • Doran, D.J. & Farr, M.M. (1965). Susceptibility of 1- and 3-day-old chicks to infection with the coccidium, Eimeria acervulina. The Journal of Protozoology, 12, 160–166.
  • Dunlop, M.W., Moss, A.F., Groves, P.J., Wilkinson, S.J., Stuetz, R.M. & Selle, P.H. (2016). The multidimensional causal factors of “wet litter” in chicken-meat production. Science of The Total Environment, 562, 766–776.
  • Edgar, S.A. (1954). Effect of temperature on the sporulation of oocysts of the protozoan, Eimeria tenella. Transactions of the American Microscopical Society, 73, 237–242.
  • Elwinger, K. & Svensson, L. (1996). Effect of dietary protein content, litter and drinker type on ammonia emission from broiler houses. Journal of Agricultural Engineering Research, 64, 197–208.
  • Enting, H., De los Mozos, J., Gutierrez del Alamo, A. & Perez de Ayala, P. (2009). Influence of minerals on litter moisture. In: 17th ed. (pp. 47–52).
  • Faure, M., Mettraux, C., Moennoz, D., Godin, J.-P., Vuichoud, J., Rochat, F., Breuillé, D., Obled, C. & Corthésy-Theulaz, I. (2006). Specific amino acids increase mucin synthesis and microbiota in dextran sulfate sodium–treated rats. The Journal of Nutrition, 136, 1558–1564.
  • Faure, M., Moennez, D., Montigon, F., Mettraux, C., Breuille, D. & Ballevre, O. (2005). Dietary threonine restriction specifically reduces intestinal mucin synthesis in rats. Journal of Nutrition, 135, 486–491.
  • Fekete, S.G. & Kellems, R. (2007). Interrelationship of feeding with immunity and parasitic infection: a review. Veterinarni Medicina-PRAHA-, 52, 131.
  • Francesch, M. & Brufau, J. (2004). Nutritional factors affecting excreta/litter moisture and quality. World’s Poultry Science Journal, 60, 64–75.
  • González-Ortiz, G., dos Santos, T.T., Vienola, K., Vartiainen, S., Apajalahti, J. & Bedford, M.R. (2019). Response of broiler chickens to xylanase and butyrate supplementation. Poultry Science, 98, 3914–3925.
  • Graat, E.A.M., Henken, A.M., Ploeger, H.W., Noordhuizen, J.P.T.M. & Vertommen, M.H. (1994). Rate and course of sporulation of oocysts of Eimeria acervulina under different environmental conditions. Parasitology, 108, 497–502.
  • Guilloteau, P., Martin, L., Eeckhaut, V., Ducatelle, R., Zabielski, R. & Van Immerseel, F. (2010). From the gut to the peripheral tissues: the multiple effects of butyrate. Nutrition Research Reviews, 23, 366–384.
  • Hansen, V.L., Kahl, S., Proszkowiec-Weglarz, M., Jiménez, S.C., Vaessen, S.F.C., Schreier, L.L., Jenkins, M.C., Russell, B. & Miska, K.B. (2021). The effects of tributyrin supplementation on weight gain and intestinal gene expression in broiler chickens during Eimeria maxima-induced coccidiosis1. Poultry Science, 100, 100984.
  • Horton-Smith, C., Taylor, E. & Turtle, E. (1940). Ammonia fumigation for coccidial disinfection. Veterinary Record, 52, 829–832.
  • Hurrell, R.F. (2003). Influence of vegetable protein sources on trace element and mineral bioavailability. Journal of Nutrition, 133, 2973S–2977S.
  • Jensen, J.B., Nyberg, P.A., Burton, S.D. & Jolley, W.R. (1976). The effects of selected gases on excystation of coccidian oocysts. The Journal of Parasitology, 62, 195–198.
  • Ji, Y., Fan, X., Zhang, Y., Li, J., Dai, Z. & Wu, Z. (2022). Glycine regulates mucosal immunity and the intestinal microbial composition in weaned piglets. Amino Acids, 54, 385–398.
  • Jondreville, C., Lescoat, P., Magnin, M., Feuerstein, D., Gruenberg, B. & Nys, Y. (2007). Sparing effect of microbial phytase on zinc supplementation in maize-soya-bean meal diets for chickens. Animal, 1, 804–811.
  • Jozefiak, D., Rutkowski, A., Fratczak, M. & Boros, D. (2004). The effect of dietary fibre fractions from different cereals and microbial enzyme supplementation on performance, ileal viscosity and short-chain fatty acid concentrations in the caeca of broiler chickens. Journal of Animal and Feed Sciences, 13, 487–496.
  • Klasing, K.C. (1998). Nutritional modulation of resistance to infectious diseases. Poultry Science, 77, 1119–1125.
  • Knížatová, M., Mihina, Š, Brouček, J., Karandušovská, I. & Mačuhová, J. (2010). The influence of litter age, litter temperature and ventilation rate on ammonia emissions from a broiler rearing facility. Czech Journal of Animal Science, 55, 337–345.
  • Koltveit, A. (1969). Effect on mortality of semipurified diets versus natural feedstuffs fed to chickens infected with Eimeria tenella. Avian Diseases, 13, 288–296.
  • Leeson, S., Namkung, H., Antongiovanni, M. & Lee, E.H. (2005). Effect of butyric acid on the performance and carcass yield of broiler chickens. Poultry Science, 84, 1418–1422.
  • Letourneau-Montminy, M.P. & Alfonso-Avila, A.R. (2020). Feeding pigs and broilers for their health: the need to go beyond animal performance -from a meta-analytic approach to animal trials. In Animal Nutrition Conference of Canada Virtual, 2 June 2020, (pp. 151–168). Animal Nutrition Conference of Canada.
  • Li, M.H. & Ooi, H.K. (2008). Effect of chromium compounds on sporulation of Eimeria piriformis oocysts. Experimental Animals, 57, 79–83.
  • Little, P.L. & Edgar, S.A. (1971). The effect of vitamin C on performance of coccidia infected chickens fed omplete and vitamin deficient semi-purified diets. Poultry Science, 50, 26–34.
  • Mateos, G.G., Sell, J.L. & Eastwood, J.A. (1982). Rate of food passage (transit time) is influenced by level of supplemental fat. Poultry Science, 61, 94–100.
  • Mayne, R.K., Else, R.W. & Hocking, P.M. (2007). High litter moisture alone is sufficient to cause footpad dermatitis in growing turkeys. British Poultry Science, 48, 538–545.
  • Memon, F.U., Yang, Y., Lv, F., Soliman, A.M., Chen, Y., Sun, J., Wang, Y., Zhang, G., Li, Z., Xu, B., Gadahi, J.A. & Si, H. (2021). Effects of probiotic and Bidens pilosa on the performance and gut health of chicken during induced Eimeria tenella infection. Journal of Applied Microbiology, 131, 425–434.
  • Morgan, N., Bhuiyan, M.M. & Hopcroft, R. (2022). Non-starch polysaccharide degradation in the gastrointestinal tract of broiler chickens fed commercial-type diets supplemented with either a single dose of xylanase, a double dose of xylanase or a cocktail of non-starch polysaccharide-degrading enzymes. Poultry Science, 101846.
  • Nguyen, H.T., Bedford, M.R. & Morgan, N.K. (2021). Importance of considering non-starch polysaccharide content of poultry diets. World’s Poultry Science Journal, 77, 619–637.
  • Nguyen, H.T., Bedford, M.R., Wu, S.B. & Morgan, N.K. (2021). Soluble non-starch polysaccharide modulates broiler gastrointestinal tract environment. Poultry Science, 100, 101183.
  • Norton, C.C. & Chard, M.J. (1983). The oocyst sporulation time of Eimeria species from the fowl. Parasitology, 86, 193–198.
  • Onrust, L., Ducatelle, R., Van Driessche, K., De Maesschalck, C., Vermuelen, K., Haesebrouck, F., et al. (2015). Steering endogenous butyrate production in the intestinal tract of broilers as a tool to improve gut health. Frontiers in Veterinary Science, 2, 1–8.
  • Panda, A.K., Bhanja, S.K. & Shyam Sunder, G. (2015). Early post hatch nutrition on immune system development and function in broiler chickens. World’s Poultry Science Journal, 71, 285–296.
  • Paris, N. & Wong, E. (2013). Expression of digestive enzymes and nutrient transporters in the intestine of Eimeria maxima-infected chickens. Poultry Science, 92, 1331–1335.
  • Peek, H.W. & Landman, W.J.M. (2011). Coccidiosis in poultry: anticoccidial products, vaccines and other prevention strategies. Veterinary Quarterly, 31, 143–161.
  • Ritz, C.W., Fairchild, B.D. & Lacy, M.P. (2004). Implications of ammonia production and emissions from commercial poultry facilities: a review. Journal of Applied Poultry Research, 13, 684–692.
  • Rochell, S.J., Helmbrecht, A., Parsons, C.M. & Dilger, R.N. (2016). Influence of dietary amino acid reductions and Eimeria acervulina infection on growth performance and intestinal cytokine responses of broilers fed low crude protein diets. Poultry Science, 95, 2602–2614.
  • Rochell, S.J., Parsons, C.M. & Dilger, R.N. (2016). Effects of Eimeria acervulina infection severity on growth performance, apparent ileal amino acid digestibility, and plasma concentrations of amino acids, carotenoids, and α1-acid glycoprotein in broilers. Poultry Science, 95, 1573–1581.
  • Ross 308 AP Performance objectives (2021). https://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross308AP-Broiler-PerformanceObjectives-2021-EN.pdf
  • Sacranie, A., Svihus, B., Denstadli, V., Iji, P.A. & Choct, M. (2012). The effect of insoluble fibre and intermittent feeding on gizzard development, gut motility and performance in broiler chickens. Australian Poultry Science Symposium, 23, 24–27.
  • Santos, T.S.d., Teng, P.-Y., Yadav, S., Castro, F.L.d.S., Gould, R.L., Craig, S.W., Chen, C., Fuller, A.L., Pazdro, R., Sartori, J.R. & Kim, W.K. (2020). Effects of inorganic Zn and Cu supplementation on gut health in broiler chickens challenged with Eimeria spp. Frontiers in Veterinary Science, 7. doi:10.3389/fvets.2020.00230
  • Scott, T.A. (2002). Impact of wet feeding wheat-based diets with or without enzyme on broiler chick performance. Canadian Journal of Animal Science, 82, 409–417.
  • Scott, T.A. & Silversides, F.G. (2003). Defining the effects of wheat type, water inclusion level, and wet-diet restriction on variability in performance of broilers fed wheat-based diets with added water. Canadian Journal of Animal Science, 83, 265–272.
  • Siegert, W., Ahmadi, H., Helmbrecht, A. & Rodehutscord, M. (2015). A quantitative study on the interactive effects of glycine and serine with threonine and choline on growth performance of broilers. Poultry Science, 94, 1557–1568.
  • Siegert, W., Ahmadi, H. & Rodehutscord, M. (2015). Meta-analysis of the influence of dietary glycine and serine, with consideration of methionine and cysteine, on growth and feed conversion of broilers. Poultry Science, 94, 1853–1863.
  • Singh, A., Masey O’Neill, H.V., Ghosh, T.K., Bedford, M.R. & Haldar, S. (2012). Effects of xylanase supplementation on performance, total volatile fatty acids and selected bacterial populations in caeca, metabolic indices and peptide YY concentrations in serum of broiler chickens fed energy restricted maize-soybean based diets. Animal Feed Science & Technology, 177, 194–203.
  • Singh, Y., Amerah, A.M. & Ravindran, V. (2014). Whole grain feeding: methodologies and effects on performance, digestive tract development and nutrient utilisation of poultry. Animal Feed Science and Technology, 190, 1–18.
  • Singh, Y., Ravindran, V. & Molan, A.L. (2015). Influence of whole wheat feeding on the development of coccidiosis in broilers challenged with Eimeria. Research in Veterinary Science, 100, 125–130.
  • Soda, K. (2022). Overview of polyamines as nutrients for human healthy long life and effect of increased polyamine intake on DNA methylation. Cells, 11, 164.
  • Soliman, E.S., Sallam, N.H. & Abouelhassan, E.M. (2018). Effectiveness of poultry litter amendments on bacterial survival and Eimeria oocyst sporulation. Veterinary World, 11, 1064–1073.
  • Star, L., Rovers, M., Corrent, E. & van der Klis, J.D. (2012). Threonine requirement of broiler chickens during subclinical intestinal Clostridium infection. Poultry Science, 91, 643–652.
  • Svihus, B., Juvik, E., Hetland, H. & Krogdahl, A. (2008). Causes for improvement in nutritive value of broiler chicken diets with whole instead of ground wheat. British Poultry Science, 45, 55–60.
  • Svihus, B., Sacranie, A., Denstadli, V. & Choct, M. (2015). Nutrient utilisation and functionality of the anterior digestive tract caused be intermittent feeding and inclusion of whole wheat in diets for broiler chickens. Poultry Science, 89, 2617–2625.
  • Taylor, J., Walk, C., Misiura, M., Sorbara, J.-O.B., Giannenas, I. & Kyriazakis, I. (2022). Quantifying the effect of coccidiosis on broiler performance and infection outcomes in the presence and absence of control methods. Poultry Science, 101, 101746.
  • Tierney, J., Gowing, H., Van Sinderen, D., Flynn, S., Stanley, L., McHardy, N., Hallahan, S., Mulcahy, G., et al. (2004). In vitro inhibition of Eimeria tenella invasion by indigenous chicken Lactobacillus species. Veterinary Parasitology, 122, 171–182.
  • Turk, D.E. (1986). Microelements in the circulation of coccidiosis-infected chicks. Poultry Science, 65, 2098–2103.
  • Waldenstedt, L., Elwinger, K., Hooshmand-Rad, P., Thebo, P. & Uggla, A. (1998). Comparison between effects of standard feed and whole wheat supplemented diet on experimental Eimeria tenella and Eimeria maxima infections in broiler chickens. Acta Veterinaria Scandinavica, 39, 461–471.
  • Waldenstedt, L., Elwinger, K., Lundén, A., Thebo, P. & Uggla, A. (2001). Sporulation of Eimeria maxima oocysts in litter with different moisture contents. Poultry Science, 80, 1412–1415.
  • Walk, C.L. (2016). The influence of calcium on phytase efficacy in non-ruminant animals. Animal Production Science, 56, 1345–1349.
  • Wickware, A.B. (1949). Studies in Eimeria tenella. Canadian Journal of Comparative Medicine and Veterinary Science, 13, 229–237.
  • Wilkinson, S., Ruth, B. & Cowieson, A. (2013). Mineral composition of calcium sources used by the Australian poultry feed industry. 24th Annual Australian Poultry Science Symposium, 24, 45–47.
  • Wils-Plotz, E.L., Jenkins, M.C. & Dilger, R.N. (2013). Modulation of the intestinal environment, innate immune response, and barrier function by dietary threonine and purified fiber during a coccidiosis challenge in broiler chicks. Poultry Science, 92, 735–745.
  • Yasar, S. & Forbes, J.M. (2000). Enzyme supplementation of dry and wet wheat-based feeds for broiler chickens: performance and gut responses. British Journal of Nutrition, 84, 297–307.
  • Yu, Y., Lu, L., Wang, R.L., Xi, L., Luo, X.G. & Liu, B. (2010). Effects if zinc source and phytate on zinc absorption by in situ ligated intestinal loops of broilers. Poultry Science, 89, 2157–2165.
  • Zhang, Q., Chen, X., Eicher, S.D., Ajuwon, K.M. & Applegate, T.J. (2016). Effect of threonine deficiency on intestinal integrity and immune response to feed withdrawal combined with coccidial vaccine challenge in broiler chicks. British Journal of Nutrition, 116, 2030–2043.
  • Zhou, Z., Nie, K., Huang, Q., Li, K., Sun, Y., Zhou, R., Wang, Z., Hu, S. (2017). Changes of cecal microflora in chickens following Eimeria tenella challenge and regulating effect of coated sodium butyrate. Experimental Parasitology, 177, 73–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.