869
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Infection dynamics of Salmonella Infantis vary considerably between chicken lines

, , , &
Pages 561-573 | Received 04 May 2022, Accepted 27 Jul 2022, Published online: 12 Oct 2022

References

  • Alba, P., Leekitcharoenphon, P., Carfora, V., Amoruso, R., Cordaro, G., Di Matteo, P., Ianzano, A., Iurescia, M., Diaconu, E.L., Pedersen, S.K., Guerra, B., Hendriksen, R.S., Franco, A. & Battisti, A. (2020). Molecular epidemiology of Salmonella Infantis in Europe: insights into the success of the bacterial host and its parasitic pESI-like megaplasmid. Microbial Genomics, 6, e000365.
  • Aviv, G., Elpers, L., Mikhlin, S., Cohen, H., Vitman Zilber, S., Grassl, G.A., Rahav, G., Hensel, M. & Gal-Mor, O. (2017). The plasmid-encoded Ipf and Klf fimbriae display different expression and varying roles in the virulence of Salmonella enterica serovar Infantis in mouse vs. avian hosts. PLoS Pathogens, 13, e1006559.
  • Aviv, G., Tsyba, K., Steck, N., Salmon-Divon, M., Cornelius, A., Rahav, G., Grassl, G.A. & Gal-Mor, O. (2014). A unique megaplasmid contributes to stress tolerance and pathogenicity of an emergent Salmonella enterica serovar Infantis strain. Environmental Microbiology, 16, 977–994.
  • Awad, W.A., Hess, C. & Hess, M. (2017). Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens. Toxins, 9, 60.
  • Awad, W.A., Molnár, A., Aschenbach, J.R., Ghareeb, K., Khayal, B., Hess, C., Liebhart, D., Dublecz, K. & Hess, M. (2015). Campylobacter infection in chickens modulates the intestinal epithelial barrier function. Innate Immunity, 21, 151–160.
  • Barrow, P.A., Bumstead, N., Marston, K., Lovell, M.A. & Wigley, P. (2004). Faecal shedding and intestinal colonization of Salmonella enterica in in-bred chickens: the effect of host-genetic background. Epidemiology and Infection, 132, 117–126.
  • Barrow, P.A., Simpson, J.M. & Lovell, M.A. (1988). Intestinal colonisation in the chicken by food-poisoning Salmonella serotypes; microbial characteristics associated with faecal excretion. Avian Pathology, 17, 571–588.
  • Beal, R.K., Powers, C., Wigley, P., Barrow, P.A. & Smith, A.L. (2004). Temporal dynamics of the cellular, humoral and cytokine responses in chickens during primary and secondary infection with Salmonella enterica serovar Typhimurium. Avian Pathology, 33, 25–33.
  • Berndt, A., Wilhelm, A., Jugert, C., Pieper, J., Sachse, K. & Methner, U. (2007). Chicken cecum immune response to Salmonella enterica serovars of different levels of invasiveness. Infection and Immunity, 75, 5993–6007.
  • Bílková, B., Bainová, Z., Janda, J., Zita, L. & Vinkler, M. (2017). Different breeds, different blood: cytometric analysis of whole blood cellular composition in chicken breeds. Veterinary Immunology and Immunopathology, 188, 71–77.
  • Borodin, АМ, Alekseev, Y.I., Gerasimov, K.E., Konovalova, N.V., Тerentjeva, E.V., Efimov, D.N., Emanuilova, Z.V., Tuchemskiy, L.I., Komarov, A.A. & Fisinin, V.I. (2020). Chickens productivity selection affects immune system genes. Vavilovskii Zhurnal Genetiki i Selektsii, 24, 755–760.
  • Boubendir, S., Arsenault, J., Quessy, S., Thibodeau, A., Fravalo, P., ThÉriault, W.P., Fournaise, S. & Gaucher, M.L. (2021). Salmonella contamination of broiler chicken carcasses at critical steps of the slaughter process and in the environment of two slaughter plants: prevalence, genetic profiles, and association with the final carcass status. Journal of Food Protection, 84, 321–332.
  • Bumstead, N. & Barrow, P. (1993). Resistance to Salmonella gallinarum, S. pullorum, and S. enteritidis in inbred lines of chickens. Avian Diseases, 37, 189–193.
  • Cheema, M.A., Qureshi, M.A. & Havenstein, G.B. (2003). A comparison of the immune response of a 2001 commercial broiler with a 1957 randombred broiler strain when fed representative 1957 and 2001 broiler diets. Poultry Science, 82, 1519–1529.
  • Crouch, C.F., Pugh, C., Patel, A., Brink, H., Wharmby, C., Watts, A., van Hulten, M. & de Vries, S. (2020). Reduction in intestinal colonization and invasion of internal organs after challenge by homologous and heterologous serovars of Salmonella enterica following vaccination of chickens with a novel trivalent inactivated Salmonella vaccine. Avian Pathology, 49, 666–677.
  • Drauch, V., Ibesich, C., Vogl, C., Hess, M. & Hess, C. (2020). In-vitro testing of bacteriostatic and bactericidal efficacy of commercial disinfectants against Salmonella Infantis reveals substantial differences between products and bacterial strains. International Journal of Food Microbiology, 328, 108660.
  • Drauch, V., Kornschober, C., Palmieri, N., Hess, M. & Hess, C. (2021). Infection dynamics of Salmonella Infantis strains displaying different genetic backgrounds - with or without pESI-like plasmid – vary considerably. Emerging Microbes & Infections, 10, 1471–1480.
  • EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). (2021). The European union one health 2020 zoonoses report. EFSA Journal, 19, 6971.
  • García-Soto, S., Abdel-Glil, M.Y., Tomaso, H., Linde, J. & Methner, U. (2020). Emergence of multidrug-resistant Salmonella enterica subspecies enterica serovar Infantis of multilocus sequence type 2283 in German broiler farms. Frontiers in Microbiology, 11, 1741.
  • Gast, R.K., Guard-Bouldin, J. & Holt, P.S. (2005). The relationship between the duration of fecal shedding and the production of contaminated eggs by laying hens infected with strains of Salmonella Enteritidis and Salmonella Heidelberg. Avian Diseases, 49, 382–386.
  • Gast, R.K., Guraya, R., Jones, D.R., Guard, J., Anderson, K.E. & Karcher, D.M. (2017). Frequency and duration of fecal shedding of Salmonella serovars Heidelberg and Typhimurium by experimentally infected laying hens housed in enriched colony cages at different stocking densities. Avian Diseases, 61, 366–371.
  • Giles, T., Sakkas, P., Belkhiri, A., Barrow, P., Kyriazakis, I. & Foster, N. (2019). Differential immune response to Eimeria maxima infection in fast- and slow-growing broiler genotypes. Parasite Immunology, 41, e12660.
  • Guillot, J.F., Beaumont, C., Bellatif, F., Mouline, C., Lantier, F., Colin, P. & Protais, J. (1995). Comparison of resistance of various poultry lines to infection by Salmonella enteritidis. Veterinary Research, 26, 81–86.
  • Han, Z., Willer, T., Pielsticker, C., Gerzova, L., Rychlik, I. & Rautenschlein, S. (2016). Differences in host breed and diet influence colonization by Campylobacter jejuni and induction of local immune responses in chicken. Gut Pathogens, 8, 56.
  • Hankel, J., Popp, J., Meemken, D., Zeiger, K., Beyerbach, M., Taube, V., Klein, G. & Visscher, C. (2018). Influence of lauric acid on the susceptibility of chickens to an experimental Campylobacter jejuni colonisation. PLoS One, 13, e0204483.
  • Ijaz, A., Veldhuizen, E., Broere, F., Rutten, V. & Jansen, C.A. (2021). The interplay between Salmonella and intestinal innate immune cells in chickens. Pathogens, 10, 1512.
  • Kaiser, M.G., Hsieh, J., Kaiser, P. & Lamont, S.J. (2022). Differential immunological response detected in mRNA expression profiles among diverse chicken lines in response to Salmonella challenge. Poultry Science, 101, 101605.
  • Kempf, F., Menanteau, P., Rychlik, I., Kubasová, T., Trotereau, J., Virlogeux-Payant, I., Schaeffer, S., Schouler, C., Drumo, R., Guitton, E. & Velge, P. (2020). Gut microbiota composition before infection determines the Salmonella super- and low-shedder phenotypes in chicken. Microbial Biotechnology, 13, 1611–1630.
  • Koenen, M.E., Boonstra-Blom, A.G. & Jeurissen, S.H. (2002). Immunological differences between layer- and broiler-type chickens. Veterinary Immunology and Immunopathology, 89, 47–56.
  • Koyuncu, S., Andersson, M.G., Löfström, C., Skandamis, P.N., Gounadaki, A., Zentek, J. & Häggblom, P. (2013). Organic acids for control of Salmonella in different feed materials. BMC Veterinary Research, 9, 81.
  • Kramer, J., Visscher, A.H., Wagenaar, J.A., Cornelissen, J.B. & Jeurissen, S.H. (2003). Comparison of natural resistance in seven genetic groups of meat-type chicken. British Poultry Science, 44, 577–585.
  • Li, X., Nie, C., Zhang, Z., Wang, Q., Shao, P., Zhao, Q., Chen, Y., Wang, D., Li, Y., Jiao, W., Li, L., Qin, S., He, L., Jia, Y., Ning, Z. & Qu, L. (2018). Evaluation of genetic resistance to Salmonella Pullorum in three chicken lines. Poultry Science, 97, 764–769.
  • Matthews, L., Low, J.C., Gally, D.L., Pearce, M.C., Mellor, D.J., Heesterbeek, J.A., Chase-Topping, M., Naylor, S.W., Shaw, D.J., Reid, S.W., Gunn, G.J. & Woolhouse, M.E. (2006). Heterogeneous shedding of Escherichia coli O157 in cattle and its implications for control. Proceedings of the National Academy of Sciences of the United States of America, 103, 547–552.
  • Menanteau, P., Kempf, F., Trotereau, J., Virlogeux-Payant, I., Gitton, E., Dalifard, J., Gabriel, I., Rychlik, I. & Velge, P. (2018). Role of systemic infection, cross contaminations and super-shedders in Salmonella carrier state in chicken. Environmental Microbiology, 20, 3246–3260.
  • Mitra, T., Gerner, W., Kidane, F.A., Wernsdorf, P., Hess, M., Saalmüller, A. & Liebhart, D. (2017). Vaccination against histomonosis limits pronounced changes of B cells and T-cell subsets in turkeys and chickens. Vaccine, 35, 4184–4196.
  • Montoro-Dasi, L., Villagra, A., Vega, S. & Marin, C. (2021). Influence of farm management on the dynamics of Salmonella enterica serovar Infantis shedding and antibiotic resistance during the growing period of broiler chickens. The Veterinary Record, 188, e302.
  • Nógrády, N., Király, M., Davies, R. & Nagy, B. (2012). Multidrug resistant clones of Salmonella Infantis of broiler origin in Europe. International Journal of Food Microbiology, 157, 108–112.
  • Qureshi, M.A. (2003). Avian macrophage and immune response: an overview. Poultry Science, 82, 691–698.
  • Qureshi, M.A., Dietert, R.R. & Bacon, L.D. (1986). Genetic variation in the recruitment and activation of chicken peritoneal macrophages. Proceedings of the Society for Experimental Biology and Medicine, 181, 560–568.
  • Sakano, C., Kuroda, M., Sekizuka, T., Ishioka, T., Morita, Y., Ryo, A., Tsukagoshi, H., Kawai, Y., Inoue, N., Takada, H., Ogaswara, Y., Nishina, A., Shimoda, M.A., Kozawa, K., Oishi, K. & Kimura, H. (2013). Genetic analysis of non-hydrogen sulfide-producing Salmonella enterica serovar typhimurium and S. enterica serovar infantis isolates in Japan. Journal of Clinical Microbiology, 51, 328–330.
  • Schokker, D., Peters, T.H., Hoekman, A.J., Rebel, J.M. & Smits, M.A. (2012). Differences in the early response of hatchlings of different chicken breeding lines to Salmonella enterica serovar Enteritidis infection. Poultry Science, 91, 346–353.
  • Setta, A.M., Barrow, P.A., Kaiser, P. & Jones, M.A. (2012). Early immune dynamics following infection with Salmonella enterica serovars Enteritidis, Infantis, Pullorum and Gallinarum: cytokine and chemokine gene expression profile and cellular changes of chicken cecal tonsils. Comparative Immunology, Microbiology and Infectious Diseases, 35, 397–410.
  • Sevilla-Navarro, S., Catalá-Gregori, P., García, C., Cortés, V. & Marin, C. (2020). Salmonella Infantis and Salmonella Enteritidis specific bacteriophages isolated form poultry faeces as a complementary tool for cleaning and disinfection against Salmonella. Comparative Immunology, Microbiology and Infectious Diseases, 68, 101405.
  • Slater, N., Mitchell, R.M., Whitlock, R.H., Fyock, T., Pradhan, A.K., Knupfer, E., Schukken, Y.H. & Louzoun, Y. (2016). Impact of the shedding level on transmission of persistent infections in Mycobacterium avium subspecies paratuberculosis (MAP). Veterinary Research, 47, 38.
  • Snoeyenbos, G.H., Soerjadi, A.S. & Weinack, O.M. (1982). Gastrointestinal colonization by salmonellae and pathogenic Escherichia coli in monoxenic and holoxenic chicks and poults. Avian Diseases, 26, 566–575.
  • Tyson, G.H., Li, C., Harrison, L.B., Martin, G., Hsu, C.H., Tate, H., Tran, T.T., Strain, E. & Zhao, S. (2021). A multidrug-resistant Salmonella Infantis clone is spreading and recombining in the United States. Microbial Drug Resistance (Larchmont, N.Y.), 27, 792–799.
  • van Hemert, S., Hoekman, A.J., Smits, M.A. & Rebel, J.M. (2006). Gene expression responses to a Salmonella infection in the chicken intestine differ between lines. Veterinary Immunology and Immunopathology, 114, 247–258.
  • van Immerseel, F., Methner, U., Rychlik, I., Nagy, B., Velge, P., Martin, G., Foster, N., Ducatelle, R. & Barrow, P.A. (2005). Vaccination and early protection against non-host-specific Salmonella serotypes in poultry: exploitation of innate immunity and microbial activity. Epidemiology and Infection, 133, 959–978.
  • van der Most, P.J., de Jong, B., Parmentier, H.K. & Verhulst, S. (2011). Trade-off between growth and immune function: a meta-analysis of selection experiments. Functional Ecology, 25, 74–80.
  • Varmuzova, K., Kubasova, T., Davidova-Gerzova, L., Sisak, F., Havlickova, H., Sebkova, A., Faldynova, M. & Rychlik, I. (2016). Composition of gut microbiota influences resistance of newly hatched chickens to Salmonella Enteritidis infection. Frontiers in Microbiology, 7, 957.
  • Wigley, P., Hulme, S.D., Bumstead, N. & Barrow, P.A. (2002). In vivo and in vitro studies of genetic resistance to systemic salmonellosis in the chicken encoded by the SAL1 locus. Microbes and Infection, 4, 1111–1120.
  • Wigley, P., Hulme, S., Rothwell, L., Bumstead, N., Kaiser, P. & Barrow, P. (2006). Macrophages isolated from chickens genetically resistant or susceptible to systemic salmonellosis show magnitudinal and temporal differential expression of cytokines and chemokines following Salmonella enterica challenge. Infection and Immunity, 74, 1425–1430.
  • Zeng, H., De Reu, K., Gabriël, S., Mattheus, W., De Zutter, L. & Rasschaert, G. (2021). Salmonella prevalence and persistence in industrialized poultry slaughterhouses. Poultry Science, 100, 100991.
  • Zhou, H. & Lamont, S.J. (2007). Global gene expression profile after Salmonella enterica serovar enteritidis challenge in two F8 advanced intercross chicken lines. Cytogenetic and Genome Research, 117, 131–138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.