3,271
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Chicken genome editing for investigating poultry pathogens

, & ORCID Icon
Pages 1-11 | Received 01 Jun 2022, Accepted 18 Sep 2022, Published online: 24 Oct 2022

References

  • Abu-Bonsrah, K.D., Zhang, D. & Newgreen, D.F. (2016). CRISPR/Cas9 targets chicken embryonic somatic cells in vitro and in vivo and generates phenotypic abnormalities. Scientific Reports, 6, 34524.
  • Abudayyeh, O.O., Gootenberg, J.S., Essletzbichler, P., Han, S., Joung, J., Belanto, J.J., Verdine, V., Cox, D.B.T., Kellner, M.J., Regev, A., Lander, E.S., Voytas, D.F., Ting, A.Y. & Zhang, F. (2017). RNA targeting with CRISPR–Cas13. Nature, 550, 280–284.
  • Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B.T., Shmakov, S., Makarova, K.S., Semenova, E., Minakhin, L., Severinov, K., Regev, A., Lander, E.S., Koonin, E.V. & Zhang, F. (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353, aaf5573.
  • Ai, Y., Liang, D. & Wilusz, J.E. (2022). CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells. Nucleic Acids Research, 50, e65.
  • Akidil, E., Albanese, M., Buschle, A., Ruhle, A., Pich, D., Keppler, O.T. & Hammerschmidt, W. (2021). Highly efficient CRISPR-Cas9-mediated gene knockout in primary human B cells for functional genetic studies of Epstein-Barr virus infection. PLoS Pathogens, 17, e1009117.
  • An, D.S., Qin, F.X.-F., Auyeung, V.C., Mao, S.H., Kung, S.K.P., Baltimore, D. & Chen, I.S.Y. (2006). Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Molecular Therapy, 14, 494–504.
  • Ballantyne, M., Woodcock, M., Doddamani, D., Hu, T., Taylor, L., Hawken, R.J. & McGrew, M.J. (2021). Direct allele introgression into pure chicken breeds using sire dam Surrogate (SDS) mating. Nature Communications, 12, 659.
  • Barzilai-Tutsch, H., Morin, V., Toulouse, G., Chernyavskiy, O., Firth, S., Marcelle, C. & Serralbo, O. (2022). Transgenic quails reveal dynamic TCF/β-catenin signaling during avian embryonic development. ELife, 11, e72098.
  • Bertzbach, L.D., Laparidou, M., Härtle, S., Etches, R.J., Kaspers, B., Schusser, B. & Kaufer, B.B. (2018). Unraveling the role of B cells in the pathogenesis of an oncogenic avian herpesvirus. Proceedings of the National Academy of Sciences, 115, 11603–11607.
  • Buerstedde, J.M., Reynaud, C.A., Humphries, E.H., Olson, W., Ewert, D.L. & Weill, J.C. (1990). Light chain gene conversion continues at high rate in an ALV-induced cell line. The EMBO Journal, 9, 921–927.
  • Chal, J., Oginuma, M., Al Tanoury, Z., Gobert, B., Sumara, O., Hick, A., Bousson, F., Zidouni, Y., Mursch, C., Moncuquet, P. & Tassy, O. (2015). Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nature Biotechnology, 33, 962–969.
  • Challagulla, A., Jenkins, K.A., O’Neil, T.E., Morris, K.R., Wise, T.G., Tizard, M.L., Bean, A.G.D., Schat, K.A. & Doran, T.J. (2020). Germline engineering of the chicken genome using CRISPR/Cas9 by in vivo transfection of PGCs. Animal Biotechnology, 0, 1–10.
  • Challagulla, A., Jenkins, K.A., O’Neil, T.E., Shi, S., Morris, K.R., Wise, T.G., Paradkar, P.N., Tizard, M.L., Doran, T.J. & Schat, K.A. (2021). In vivo inhibition of Marek’s disease virus in transgenic chickens expressing Cas9 and gRNA against ICP4. Microorganisms, 9, 164.
  • Challagulla, A., Schat, K.A. & Doran, T.J. (2021). In vitro inhibition of influenza virus using CRISPR/Cas13a in chicken cells. Methods and Protocols, 4, 40.
  • Challagulla, A., Tizard, M.L., Doran, T.J., Cahill, D.M. & Jenkins, K.A. (2022). Harnessing intronic microRNA structures to improve tolerance and expression of shRNAs in animal cells. Methods and Protocols, 5, 18.
  • Chang, H.H.Y., Pannunzio, N.R., Adachi, N. & Lieber, M.R. (2017). Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature Reviews Molecular Cell Biology, 18, 495–506.
  • Chen, J. (2016). The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harbor Perspectives in Medicine, 6, a026104.
  • Cheng, Y., Lun, M., Liu, Y., Wang, H., Yan, Y. & Sun, J. (2019). CRISPR/Cas9-mediated chicken TBK1 gene knockout and its essential role in STING-mediated IFN-β induction in chicken cells. Frontiers in Immunology, 9.
  • Chojnacka-Puchta, L. & Sawicka, D. (2020). CRISPR/Cas9 gene editing in a chicken model: current approaches and applications. Journal of Applied Genetics, 61, 221–229.
  • Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A. & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.
  • Cossart, P., Boquet, P., Normark, S. & Rappuoli, R. (1996). Cellular microbiology emerging. Science, 271, 315–316.
  • Cristalli, A. & Capua, I. (2007). Practical problems in controlling H5N1 high pathogenicity avian influenza at village level in Vietnam and introduction of biosecurity measures. Avian Diseases, 51, 461–462.
  • Dai, R., Rossello, R., Chen, C., Kessler, J., Davison, I., Hochgeschwender, U. & Jarvis, E.D. (2014). Maintenance and neuronal differentiation of chicken induced pluripotent stem-like cells. Stem Cells International, 2014, e182737.
  • De Filippis, L., Lamorte, G., Snyder, E.Y., Malgaroli, A. & Vescovi, A.L. (2007). A novel, immortal, and multipotent human neural stem cell line generating functional neurons and oligodendrocytes. Stem Cells, 25, 2312–2321.
  • Duan, Z., Han, Y., Zhou, L., Yuan, C., Wang, Y., Zhao, C., Tang, H. & Chen, J. (2020). Chicken bromodomain-containing protein 2 interacts with the Newcastle disease virus matrix protein and promotes viral replication. Veterinary Research, 51, 120.
  • Esnault, E., Bonsergent, C., Larcher, T., Bed’hom, B., Vautherot, J.-F., Delaleu, B., Guigand, L., Soubieux, D., Marc, D. & Quéré, P. (2011). A novel chicken lung epithelial cell line: characterization and response to low pathogenicity avian influenza virus. Virus Research, 159, 32–42.
  • Eyal-Giladi, H. & Kochav, S. (1976). From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick: I. general morphology. Developmental Biology, 49, 321–337.
  • FAO. (2021). Meat market review: emerging trends and outlook, December 2021. Rome.
  • FAO. (2022, August 22). FAOSTAT Statistical Database.
  • Frattini, A., Fabbri, M., Valli, R., De Paoli, E., Montalbano, G., Gribaldo, L., Pasquali, F. & Maserati, E. (2015). High variability of genomic instability and gene expression profiling in different HeLa clones. Scientific Reports, 5, 15377.
  • Giering, J.C., Grimm, D., Storm, T.A. & Kay, M.A. (2008). Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Molecular Therapy, 16, 1630–1636.
  • Glover, J.D., Taylor, L., Sherman, A., Zeiger-Poli, C., Sang, H.M. & McGrew, M.J. (2013). A novel piggyBac transposon inducible expression system identifies a role for Akt signalling in primordial germ cell migration. PLoS One, 8, e77222.
  • Grimm, D., Streetz, K.L., Jopling, C.L., Storm, T.A., Pandey, K., Davis, C.R., Marion, P., Salazar, F. & Kay, M.A. (2006). Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature, 441, 537–541.
  • Hayward, W.S., Neel, B.G. & Astrin, S.M. (1981). Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature, 290, 475–480.
  • Hellmich, R., Sid, H., Lengyel, K., Flisikowski, K., Schlickenrieder, A., Bartsch, D., Thoma, T., Bertzbach, L.D., Kaufer, B.B., Nair, V., Preisinger, R. & Schusser, B. (2020). Acquiring resistance against a retroviral infection via CRISPR/Cas9 targeted genome editing in a commercial chicken line. Frontiers in Genome Editing, 2.
  • Hu, T., Taylor, L., Sherman, A., Keambou Tiambo, C., Kemp, S.J., Whitelaw, B., Hawken, R.J., Djikeng, A. & McGrew, M.J. (2022). A low-tech, cost-effective and efficient method for safeguarding genetic diversity by direct cryopreservation of poultry embryonic reproductive cells. ELife, 11, e74036.
  • Irfan Maqsood, M., Matin, M.M., Bahrami, A.R. & Ghasroldasht, M.M. (2013). Immortality of cell lines: challenges and advantages of establishment. Cell Biology International, 37, 1038–1045.
  • Ivics, Z., Li, M.A., Mátés, L., Boeke, J.D., Nagy, A., Bradley, A. & Izsvák, Z. (2009). Transposon-mediated genome manipulation in vertebrates. Nature Methods, 6, 415–422.
  • Kartsogiannis, V. & Ng, K.W. (2004). Cell lines and primary cell cultures in the study of bone cell biology. Molecular and Cellular Endocrinology, 228, 79–102.
  • Kim, Y.G., Cha, J. & Chandrasegaran, S. (1996). Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America, 93, 1156–1160.
  • Kim, J., Koo, B.-K. & Knoblich, J.A. (2020). Human organoids: model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 21, 571–584.
  • Kim, S., Humphries, E.H., Tjoelker, L., Carlson, L. & Thompson, C.B. (1990). Ongoing diversification of the rearranged immunoglobulin light-chain gene in a bursal lymphoma cell line. Molecular and Cellular Biology, 10, 3224–3231.
  • Kim, T.H. & Zhou, H. (2015). Functional analysis of chicken IRF7 in response to dsRNA analog poly(I:C) by integrating overexpression and knockdown. PLoS One, 10, e0133450.
  • Koslová, A., Kučerová, D., Reinišová, M., Geryk, J., Trefil, P. & Hejnar, J. (2018). Genetic resistance to avian leukosis viruses induced by CRISPR/Cas9 editing of specific receptor genes in chicken cells. Viruses, 10, 605.
  • Koslová, A., Trefil, P., Mucksová, J., Reinišová, M., Plachý, J., Kalina, J., Kučerová, D., Geryk, J., Krchlíková, V., Lejčková, B. & Hejnar, J. (2020). Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus. Proceedings of the National Academy of Sciences, 117, 2108–2112.
  • Lambeth, L.S., Zhao, Y., Smith, L.P., Kgosana, L. & Nair, V. (2009). Targeting Marek’s disease virus by RNA interference delivered from a herpesvirus vaccine. Vaccine, 27, 298–306.
  • Lee, K.Y., Choi, H.J., Park, K.J., Woo, S.J., Kim, Y.M. & Han, J.Y. (2022). Development and characterization of a CRISPR/Cas9-mediated RAG1 knockout chicken model lacking mature B and T cells. Frontiers in Immunology, 13.
  • Lee, H.C., Lim, S. & Han, J.Y. (2016). Wnt/β-catenin signaling pathway activation is required for proliferation of chicken primordial germ cells in vitro. Scientific Reports, 6, 34510.
  • Lee, J., Ma, J. & Lee, K. (2019). Direct delivery of adenoviral CRISPR/Cas9 vector into the blastoderm for generation of targeted gene knockout in quail. Proceedings of the National Academy of Sciences, 116, 13288–13292.
  • Li, T., Huang, S., Jiang, W.Z., Wright, D., Spalding, M.H., Weeks, D.P. & Yang, B. (2011). TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Research, 39, 359–372.
  • Li, K., Liu, Y., Xu, Z., Zhang, Y., Yao, Y., Nair, V., Liu, C., Zhang, Y., Gao, Y., Qi, X., Cui, H., Gao, L. & Wang, X. (2020). Prevention of avian retrovirus infection in chickens using CRISPR-Cas9 delivered by Marek’s disease virus. Molecular Therapy - Nucleic Acids, 21, 343–353.
  • Liu, Y., Mi, Y., Mueller, T., Kreibich, S., Williams, E.G., Van Drogen, A., Borel, C., Frank, M., Germain, P.L., Bludau, I. & Mehnert, M. (2019). Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nature Biotechnology, 37, 314–322.
  • Liu, Y., Xu, Z., Zhang, Y., Yu, M., Wang, S., Gao, Y., Liu, C., Zhang, Y., Gao, L., Qi, X., Cui, H., Pan, Q., Li, K. & Wang, X. (2020). Marek’s disease virus as a CRISPR/Cas9 delivery system to defend against avian leukosis virus infection in chickens. Veterinary Microbiology, 242, 108589.
  • Long, J.S., Idoko-Akoh, A., Mistry, B., Goldhill, D., Staller, E., Schreyer, J., Ross, C., Goodbourn, S., Shelton, H., Skinner, M.A., Sang, H., McGrew, M.J. & Barclay, W. (2019). Species specific differences in use of ANP32 proteins by influenza a virus. ELife, 8, e45066.
  • Lu, Y., West, F.D., Jordan, B.J., Mumaw, J.L., Jordan, E.T., Gallegos-Cardenas, A., Beckstead, R.B. & Stice, S.L. (2012). Avian-induced pluripotent stem cells derived using human reprogramming factors. Stem Cells and Development, 21, 394–403.
  • Macdonald, J., Taylor, L., Sherman, A., Kawakami, K., Takahashi, Y., Sang, H.M. & McGrew, M.J. (2012). Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proceedings of the National Academy of Sciences, 109, E1466–E1472.
  • Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J., Charpentier, E., Haft, D.H. & Horvath, P. (2015). An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 13, 722–736.
  • McGrew, M.J., Sherman, A., Ellard, F.M., Lillico, S.G., Gilhooley, H.J., Kingsman, A.J., Mitrophanous, K.A. & Sang, H. (2004). Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Reports, 5, 728–733.
  • Minematsu, T., Kanai, Y. & Tajima, A. (2004). Effects of ultraviolet irradiation on the migratory ability of primordial germ cells (PGCs) in the domestic chicken. The Journal of Poultry Science, 41, 110–119.
  • Morales, C.P., Holt, S.E., Ouellette, M., Kaur, K.J., Yan, Y., Wilson, K.S., White, M.A., Wright, W.E. & Shay, J.W. (1999). Absence of cancer–associated changes in human fibroblasts immortalized with telomerase. Nature Genetics, 21, 115–118.
  • Mottet, A. & Tempio, G. (2017). Global poultry production: current state and future outlook and challenges. World's Poultry Science Journal, 73, 245–256.
  • Nakamura, Y., Usui, F., Ono, T., Takeda, K., Nirasawa, K., Kagami, H. & Tagami, T. (2010). Germline replacement by transfer of primordial germ cells into partially sterilized embryos in the Chicken. Biology of Reproduction, 83, 130–137.
  • Nash, T.J., Morris, K.M., Mabbott, N.A. & Vervelde, L. (2021). Inside-out chicken enteroids with leukocyte component as a model to study host–pathogen interactions. Communications Biology, 4, 1–15.
  • Nuñez, J.K., Chen, J., Pommier, G.C., Cogan, J.Z., Replogle, J.M., Adriaens, C., Ramadoss, G.N., Shi, Q., Hung, K.L., Samelson, A.J., Pogson, A.N., Kim, J.Y.S., Chung, A., Leonetti, M.D., Chang, H.Y., Kampmann, M., Bernstein, B.E., Hovestadt, V., Gilbert, L.A. & Weissman, J.S. (2021). Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell, 184, 2503–2519.e17.
  • O’Geen, H., Bates, S.L., Carter, S.S., Nisson, K.A., Halmai, J., Fink, K.D., Rhie, S.K., Farnham, P.J. & Segal, D.J. (2019). Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics & Chromatin, 12, 26.
  • Pain, B., Clark, M.E., Shen, M., Nakazawa, H., Sakurai, M., Samarut, J. & Etches, R.J. (1996). Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development, 122, 2339–2348.
  • Park, K.J., Kang, S.J., Kim, T.M., Lee, Y.M., Lee, H.C., Song, G. & Han, J.Y. (2010). Gamma-irradiation depletes endogenous germ cells and increases donor cell distribution in chimeric chickens. In Vitro Cellular & Developmental Biology - Animal, 46, 828–833.
  • Park, T.S. & Han, J.Y. (2012). PiggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proceedings of the National Academy of Sciences, 109, 9337–9341.
  • Pellegrino, E. & Gutierrez, M.G. (2021). Human stem cell-based models for studying host-pathogen interactions. Cellular Microbiology, 23, e13335.
  • Pereira-Smith, O.M. & Smith, J.R. (1988). Genetic analysis of indefinite division in human cells: identification of four complementation groups. Proceedings of the National Academy of Sciences, 85, 6042–6046.
  • Rath, N.C., Liyanage, R., Gupta, A., Packialakshmi, B. & Lay, J.O. (2018). A method to culture chicken enterocytes and their characterization. Poultry Science, 97, 4040–4047.
  • Romito, A. & Cobellis, G. (2015). Pluripotent stem cells: current understanding and future directions. Stem Cells International, 2016, e9451492.
  • Rothkamm, K., Krüger, I., Thompson, L.H. & Löbrich, M. (2003). Pathways of DNA double-strand break repair during the mammalian cell cycle. Molecular and Cellular Biology, 23, 5706–5715.
  • Salter, D.W., Smith, E.J., Hughes, S.H., Wright, S.E., Fadly, A.M., Witter, R.L. & Crittenden, L.B. (1986). Gene insertion into the chicken germ line by retroviruses. Poultry Science, 65, 1445–1458.
  • Sato, Y., Kasai, T., Nakagawa, S., Tanabe, K., Watanabe, T., Kawakami, K. & Takahashi, Y. (2007). Stable integration and conditional expression of electroporated transgenes in chicken embryos. Developmental Biology, 305, 616–624.
  • Schusser, B., Collarini, E.J., Pedersen, D., Yi, H., Ching, K., Izquierdo, S., Thoma, T., Lettmann, S., Kaspers, B., Etches, R.J., van de Lavoir, M.-C., Harriman, W. & Leighton, P.A. (2016). Expression of heavy chain-only antibodies can support B-cell development in light chain knockout chickens. European Journal of Immunology, 46, 2137–2148.
  • Schusser, B., Collarini, E.J., Yi, H., Izquierdo, S.M., Fesler, J., Pedersen, D., Klasing, K.C., Kaspers, B., Harriman, W.D., Lavoir, M.-C. van de., Etches, R.J. & Leighton, P.A. (2013). Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proceedings of the National Academy of Sciences, 110, 20170–20175.
  • Seki, A. & Rutz, S. (2018). Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. Journal of Experimental Medicine, 215, 985–997.
  • Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelson, T., Heckl, D., Ebert, B.L., Root, D.E., Doench, J.G. & Zhang, F. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science (New York, N.Y.), 343, 84–87.
  • Shay, J.W., Wright, W.E. & Werbin, H. (1991). Defining the molecular mechanisms of human cell immortalization. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1072, 1–7.
  • Shi, J., Xue, C., Liu, W. & Zhang, H. (2019). Differentiation of human-induced pluripotent stem cells to macrophages for disease modeling and functional genomics. Current Protocols in Stem Cell Biology, 48, e74.
  • Soice, E. & Johnston, J. (2021). Immortalizing cells for human consumption. International Journal of Molecular Sciences, 22, 11660.
  • Spence, J.R., Mayhew, C.N., Rankin, S.A., Kuhar, M.F., Vallance, J.E., Tolle, K., Hoskins, E.E., Kalinichenko, V.V., Wells, S.I., Zorn, A.M., Shroyer, N.F. & Wells, J.M. (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470, 105–109.
  • Takahashi, A., Ohtani, N. & Hara, E. (2007). Irreversibility of cellular senescence: dual roles of p16INK4a/Rb-pathway in cell cycle control. Cell Division, 2, 10.
  • Trefil, P., Aumann, D., Koslová, A., Mucksová, J., Benešová, B., Kalina, J., Wurmser, C., Fries, R., Elleder, D., Schusser, B. & Hejnar, J. (2017). Male fertility restored by transplanting primordial germ cells into testes: a new way towards efficient transgenesis in chicken. Scientific Reports, 7, 14246.
  • Tyack, S.G., Jenkins, K.A., O’Neil, T.E., Wise, T.G., Morris, K.R., Bruce, M.P., McLeod, S., Wade, A.J., McKay, J., Moore, R.J., Schat, K.A., Lowenthal, J.W. & Doran, T.J. (2013). A new method for producing transgenic birds via direct in vivo transfection of primordial germ cells. Transgenic Research, 22, 1257–1264.
  • van de Lavoir, M.-C., Diamond, J.H., Leighton, P.A., Mather-Love, C., Heyer, B.S., Bradshaw, R., Kerchner, A., Hooi, L.T., Gessaro, T.M., Swanberg, S.E., Delany, M.E. & Etches, R.J. (2006). Germline transmission of genetically modified primordial germ cells. Nature, 441, 766–769.
  • Wang, W., Zhang, T., Wu, C., Wang, S., Wang, Y., Li, H. & Wang, N. (2017). Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR. PLoS One, 12, e0177348.
  • Welch, M.D. (2015). Why should cell biologists study microbial pathogens? Molecular Biology of the Cell, 26, 4295–4301.
  • Whyte, J., Glover, J.D., Woodcock, M., Brzeszczynska, J., Taylor, L., Sherman, A., Kaiser, P. & McGrew, M.J. (2015). FGF, insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem Cell Reports, 5, 1171–1182.
  • Williams, R.M., Senanayake, U., Artibani, M., Taylor, G., Wells, D., Ahmed, A.A. & Sauka-Spengler, T. (2018). Genome and epigenome engineering CRISPR toolkit for in vivo modulation of cis-regulatory interactions and gene expression in the chicken embryo. Development, 145, dev160333.
  • Winding, P. & Berchtold, M.W. (2001). The chicken B cell line DT40: a novel tool for gene disruption experiments. Journal of Immunological Methods, 249, 1–16.
  • Woodcock, M.E., Idoko-Akoh, A. & McGrew, M.J. (2017). Gene editing in birds takes flight. Mammalian Genome, 28, 315–323.
  • Young, C.S., Hicks, M.R., Ermolova, N.V., Nakano, H., Jan, M., Younesi, S., Karumbayaram, S., Kumagai-Cresse, C., Wang, D., Zack, J.A., Kohn, D.B., Nakano, A., Nelson, S.F., Miceli, M.C., Spencer, M.J. & Pyle, A.D. (2016). A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell, 18, 533–540.
  • Yue, H., Li, D., Fu, A., Ma, L., Yang, F. & Tang, C. (2008). ShRNA-triggered RNAi inhibits expression of NDV NP gene in chicken embryo fibroblast. Frontiers of Biology in China, 3, 433.
  • Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., Koonin, E.V. & Zhang, F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163, 759–771.
  • Zhang, H., Shi, J., Hachet, M.A., Xue, C., Bauer, R.C., Jiang, H., Li, W., Tohyama, J., Millar, J., Billheimer, J., Phillips, M.C., Razani, B., Rader, D.J. & Reilly, M.P. (2017). CRISPR/Cas9-mediated gene editing in human iPSC-derived macrophage reveals lysosomal acid lipase function in human macrophages—brief report. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 2156–2160.
  • Zhang, Y., Luo, J., Tang, N., Teng, M., Reddy, V.R.A.P., Moffat, K., Shen, Z., Nair, V. & Yao, Y. (2019). Targeted editing of the pp38 gene in Marek’s disease virus-transformed cell lines using CRISPR/Cas9 system. Viruses, 11, 391.
  • Zuo, Q., Wang, Y., Cheng, S., Lian, C., Tang, B., Wang, F., Lu, Z., Ji, Y., Zhao, R., Zhang, W., Jin, K., Song, J., Zhang, Y. & Li, B. (2016). Site-directed genome knockout in chicken cell line and embryos can use CRISPR/Cas gene editing technology. G3 Genes|Genomes|Genetics, 6, 1787–1792.