114
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Riemerella anatipestifer UvrC is required for iron utilization, biofilm formation and virulence

, , , , , , , & show all
Pages 247-256 | Received 10 Oct 2023, Accepted 06 Feb 2024, Published online: 29 Feb 2024

References

  • Ailloud, F., Estibariz, I., Pfaffinger, G. & Suerbaum, S. (2022). The Helicobacter pylori UvrC nuclease is essential for chromosomal microimports after natural transformation. mBio, 13, e0181122.
  • Badger, J.L. & Miller, V.L. (1998). Expression of invasin and motility are coordinately regulated in Yersinia enterocolitica. Journal of Bacteriology, 180, 793–800.
  • Balasubramanian, R., Shen, G., Bryant, D.A. & Golbeck, J.H. (2006). Regulatory roles for IscA and SufA in iron homeostasis and redox stress responses in the cyanobacterium Synechococcus sp. strain PCC 7002. Journal of Bacteriology, 188, 3182–3191.
  • Banin, E., Vasil, M.L. & Greenberg, E.P. (2005). Iron and Pseudomonas aeruginosa biofilm formation. Proceedings of the National Academy of Sciences, 102, 11076–11081.
  • Buchmeier, N.A., Libby, S.J., Xu, Y., Loewen, P.C., Switala, J., Guiney, D.G. & Fang, F.C. (1995). DNA repair is more important than catalase for Salmonella virulence in mice. Journal of Clinical Investigation, 95, 1047–1053.
  • Chen, Z., Wang, X., Ren, X., Han, W., Malhi, K.K., Ding, C. & Yu, S. (2019). Riemerella anatipestifer GldM is required for bacterial gliding motility, protein secretion, and virulence. Veterinary Research, 50, 43.
  • Chieda, Y., Iiyama, K., Yasunaga-Aoki, C., Lee, J.M., Kusakabe, T. & Shimizu, S. (2005). Pathogenicity of gacA mutant of Pseudomonas aeruginosa PA01 in the silkworm, Bombyx mori. FEMS Microbiology Letters, 244, 181–186.
  • Darwin, K.H. & Nathan, C.F. (2005). Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis. Infection and Immunity, 73, 4581–4587.
  • Dou, Y., Yu, G., Wang, X., Wang, S., Li, T., Tian, M., Qi, J., Ding, C. & Yu, S. (2018). The Riemerella anatipestifer M949_RS01035 gene is involved in bacterial lipopolysaccharide biosynthesis. Veterinary Research, 49, 93.
  • Dragset, M.S., Ioerger, T.R., Loevenich, M., Haug, M., Sivakumar, N., Marstad, A., Cardona, P.J., Klinkenberg, G., Rubin, E.J., Steigedal, M. & Flo, T.H. (2019). Global assessment of Mycobacterium avium subsp. hominissuis genetic requirement for growth and virulence. mSystems, 4, e00402-19.
  • Du, X., Wang, J., Shan, X., Hu, Z., Gao, Y. & Hu, Q. (2023). DEAD box protein DhR1 Is a global regulator involved in the bacterial fitness and virulence of Riemerella anatipestifer. Journal of Bacteriology, 205, e0034122.
  • Fontenot, C.R. & Ding, H. (2022). Ferric uptake regulators (Fur) from Vibrio cholerae and Helicobacter pylori bind a [2Fe-2S] cluster in response to elevation of intracellular free iron content. Biometals, 35, 591–600.
  • Fontenot, C.R., Tasnim, H., Valdes, K.A., Popescu, C.V. & Ding, H. (2020). Ferric uptake regulator (Fur) reversibly binds a [2Fe-2S] cluster to sense intracellular iron homeostasis in Escherichia coli. Journal of Biological Chemistry, 295, 15454–15463.
  • Garbom, S., Forsberg, A., Wolf-Watz, H. & Kihlberg, B.M. (2004). Identification of novel virulence-associated genes via genome analysis of hypothetical genes. Infection and Immunity, 72, 1333–1340.
  • Garcia-Lopez, M., Meier-Kolthoff, J.P., Tindall, B.J., Gronow, S., Woyke, T., Kyrpides, N.C., Hahnke, R.L. & Göker, M. (2019). Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Frontiers in Microbiology, 10, 2083.
  • Graham, J.E. & Clark-Curtiss, J.E. (1999). Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proceedings of the National Academy of Sciences, 96, 11554–11559.
  • Guo, Y., Hu, D., Guo, J., Li, X., Guo, J., Wang, X., Xiao, Y., Jin, H., Liu, M., Li, Z., Bi, D. & Zhou, Z. (2017). The role of the regulator Fur in gene regulation and virulence of Riemerella anatipestifer assessed using an unmarked gene deletion system. Frontiers in Cellular and Infection Microbiology, 7, 382.
  • Gupta, M. & Outten, C.E. (2020). Iron-sulfur cluster signaling: the common thread in fungal iron regulation. Current Opinion in Chemical Biology, 55, 189–201.
  • Hirayama, S., Yasui, Y., Sasagawa, K., Domon, H. & Terao, Y. (2023). Pneumococcal proteins ClpC and UvrC as novel host plasminogen binding factors. Microbiology and Immunology, 67, 99–104.
  • Hu, D., Guo, Y., Guo, J., Wang, Y., Pan, Z., Xiao, Y., Wang, X., Hu, S., Liu, M., Li, Z., Bi, D. & Zhou, Z. (2019). Deletion of the Riemerella anatipestifer type IX secretion system gene sprA results in differential expression of outer membrane proteins and virulence. Avian Pathology, 48, 191–203.
  • Hu, Q., Chen, H., Liu, X., Zhan, M., Zhang, Z., Deen, S. & Zhang, Y. (2002). Determination of growth curve of Riemerella anatipestifer. Animal Husbandry & Veterinary Medicine, 34, 8–9.
  • Hu, Q., Han, X., Zhou, X., Ding, C., Zhu, Y. & Yu, S. (2011). Ompa is a virulence factor of Riemerella anatipestifer. Veterinary Microbiology, 150, 278–283.
  • Hu, Q., Han, X., Zhou, X., Ding, S., Ding, C. & Yu, S. (2010). Characterization of biofilm formation by Riemerella anatipestifer. Veterinary Microbiology, 144, 429–436.
  • Hu, Q., Miao, S., Ni, X., Lu, F., Yu, H., Xing, L. & Jiang, P. (2013). Construction of a shuttle vector for use in Riemerella anatipestifer. Journal of Microbiological Methods, 95, 262–267.
  • Hu, Q., Zhu, Y., Tu, J., Yin, Y., Wang, X., Han, X., Ding, C., Zhang, B. & Bu, S. (2012). Identification of the genes involved in Riemerella anatipestifer biofilm formation by random transposon mutagenesis. PLoS One, 7, e39805.
  • Janssen, R., van der Straaten, T., van Diepen, A. & van Dissel, J.T. (2003). Responses to reactive oxygen intermediates and virulence of Salmonella typhimurium. Microbes and Infection, 5, 527–534.
  • Lappin-Scott, H.M. & Bass, C. (2001). Biofilm formation: attachment, growth, and detachment of microbes from surfaces. American Journal of Infection Control, 29, 250–251.
  • Liao, H., Cheng, X., Zhu, D., Wang, M., Jia, R., Chen, S., Chen, X., Biville, F., Liu, M. & Cheng, A. (2015). Tonb energy transduction systems of Riemerella anatipestifer are required for iron and hemin utilization. PLoS One, 10, e0127506.
  • Lin, J.J. & Sancar, A. (1992). Active site of (A)BC excinuclease. I. Evidence for 5’ incision by UvrC through a catalytic site involving Asp399, Asp438, Asp466, and His538 residues. Journal of Biological Chemistry, 267, 17688–17692.
  • Lu, F., Miao, S., Tu, J., Ni, X., Xing, L., Yu, H., Pan, L. & Hu, Q. (2013). The role of TonB-dependent receptor TbdR1 in Riemerella anatipestifer in iron acquisition and virulence. Veterinary Microbiology, 167, 713–718.
  • Miao, S., Xing, L., Qi, J., Yu, H., Jiang, P., Sun, B., Cui, J., Ou, C. & Hu, Q. (2015). Roles of the TonB1 and TonB2 proteins in haemin iron acquisition and virulence in Riemerella anatipestifer. Microbiology, 161, 1592–1599.
  • Moolenaar, G.F., Moorman, C. & Goosen, N. (2000). Role of the Escherichia coli nucleotide excision repair proteins in DNA replication. Journal of Bacteriology, 182, 5706–5714.
  • Ni, X., Jiang, P., Xing, L., Ou, C., Yu, H., Qi, J., Sun, B., Cui, J., Wang, G. & Hu, Q. (2016). Genome-wide mining of potential virulence-associated genes in Riemerella anatipestifer using random transposon mutagenesis. Veterinary Microbiology, 189, 52–58.
  • O'Malley, M.R., Weisberg, A.J., Chang, J.H. & Anderson, J.C. (2019). Re-evaluation of a Tn5::gacA mutant of Pseudomonas syringae pv. tomato DC3000 uncovers roles for uvrC and anmK in promoting virulence. PLoS One, 14, e0223637.
  • Reed, M.J. & Muench, H. (1938). A simple method of estimating fifty percent endpoints. American Journal of Hygiene, 27, 493–497.
  • Romsang, A., Duang-Nkern, J., Leesukon, P., Saninjuk, K., Vattanaviboon, P. & Mongkolsuk, S. (2014). The iron-sulphur cluster biosynthesis regulator IscR contributes to iron homeostasis and resistance to oxidants in Pseudomonas aeruginosa. PLoS One, 9, e86763.
  • Rossi, F., Khanduja, J.S., Bortoluzzi, A., Houghton, J., Sander, P., Guthlein, C., Davis, E.O., Springer, B., Böttger, E.C., Relini, A., Penco, A., Muniyappa, K. & Rizzi, M. (2011). The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action. Nucleic Acids Research, 39, 7316–7328.
  • Sambir, M., Ivanova, L.B., Bryksin, A.V., Godfrey, H.P. & Cabello, F.C. (2011). Functional analysis of Borrelia burgdorferi uvrA in DNA damage protection. FEMS Microbiology Letters, 317, 172–180.
  • Sancar, A. & Rupp, W.D. (1983). A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell, 33, 249–260.
  • Segers, P., Mannheim, W., Vancanneyt, M., De Brandt, K., Hinz, K.H., Kersters, K. & Vandamme, P. (1993). Riemerella anatipestifer gen. nov., comb. nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the Flavobacterium-Cytophaga rRNA homology group. International Journal of Systematic Bacteriology, 43, 768–776.
  • Silva, R.M.B., Grodick, M.A. & Barton, J.K. (2020). Uvrc coordinates an O(2)-sensitive [4Fe4S] cofactor. Journal of the American Chemical Society, 142, 10964–10977.
  • Subramaniam, S., Huang, B., Loh, H., Kwang, J., Tan, H.M., Chua, K.L. & Frey, J. (2000). Characterization of a predominant immunogenic outer membrane protein of Riemerella anatipestifer. Clinical Diagnostic Laboratory Immunology, 7, 168–174.
  • Tan, G., Cheng, Z., Pang, Y., Landry, A.P., Li, J., Lu, J. & Ding, H. (2014). Copper binding in IscA inhibits iron-sulphur cluster assembly in Escherichia coli. Molecular Microbiology, 93, 629–644.
  • Thakur, M., Parulekar, R.S., Barale, S.S., Sonawane, K.D. & Muniyappa, K. (2022). Interrogating the substrate specificity landscape of UvrC reveals novel insights into its non-canonical function. Biophysical Journal, 121, 3103–3125.
  • Tian, X., Huang, L., Wang, M., Biville, F., Zhu, D., Jia, R., Chen, S., Zhao, X., Yang, Q., Wu, Y., Zhang, S., Huang, J., Zhang, L., Yu, Y., Cheng, A. & Liu, M. (2020). The functional identification of Dps in oxidative stress resistance and virulence of Riemerella anatipestifer CH-1 using a new unmarked gene deletion strategy. Veterinary Microbiology, 247, 108730.
  • Truglio, J.J., Croteau, D.L., Van Houten, B. & Kisker, C. (2006). Prokaryotic nucleotide excision repair: the UvrABC system. Chemical Reviews, 106, 233–252.
  • Tsai, H.J., Liu, Y.T., Tseng, C.S. & Pan, M.J. (2005). Genetic variation of the ompA and 16S rRNA genes of Riemerella anatipestifer. Avian Pathology, 34, 55–64.
  • Tu, J., Lu, F., Miao, S., Ni, X., Jiang, P., Yu, H., Xing, L., Yu, S., Ding, C. & Hu, Q. (2014). The siderophore-interacting protein is involved in iron acquisition and virulence of Riemerella anatipestifer strain CH3. Veterinary Microbiology, 168, 395–402.
  • Van Houten, B. (1990). Nucleotide excision repair in Escherichia coli. Microbiological Reviews, 54, 18–51.
  • Verhoeven, E.E., van Kesteren, M., Moolenaar, G.F., Visse, R. & Goosen, N. (2000). Catalytic sites for 3’ and 5’ incision of Escherichia coli nucleotide excision repair are both located in UvrC. Journal of Biological Chemistry, 275, 5120–5123.
  • Wang, M., Zhang, P., Zhu, D., Wang, M., Jia, R., Chen, S., Sun, K., Yang, Q., Wu, Y., Chen, X., Biville, F., Cheng, A. & Liu, M. (2017). Identification of the ferric iron utilization gene B739_1208 and its role in the virulence of R. anatipestifer CH-1. Veterinary Microbiology, 201, 162–169.
  • Wu, F., Chi, Y., Jiang, Z., Xu, Y., Xie, L., Huang, F., Wan, D., Ni, J., Yuan, F., Wu, X., Zhang, Y., Wang, L., Ye, R., Byeon, B., Wang, W., Zhang, S., Sima, M., Chen, S., Zhu, M., Pei, J., Johoson, D.M., Zhu, S., Cao, X., Pei, C., Zai, Z., Liu, Y., Liu, T., Swift, G.B., Zhang, W., Yu, M., Hu, Z., Siedow, J.N., Chen, X. & Pei, Z.M. (2020). Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature, 578, 577–581.
  • Xue, Y., Gong, Y., Qi, J., Bo, H., Yang, Y., Chen, Y., Gao, M. & Hu, Q. (2019). Adhesion and invasion of Riemerella anatipestifer to duck embryo liver cells. Chinese Journal of Animal Infectious Diseases, 27, 37–41.
  • Yi, H., Yuan, B., Liu, J., Zhu, D., Wu, Y., Wang, M., Jia, R., Sun, K., Yang, Q., Chen, S., Liu, M., Chen, X. & Cheng, A. (2017). Identification of a wza-like gene involved in capsule biosynthesis, pathogenicity and biofilm formation in Riemerella anatipestifer. Microbial Pathogenesis, 107, 442–450.
  • Yuan, H., Huang, L., Wang, M., Jia, R., Chen, S., Liu, M., Zhao, X., Yang, Q., Wu, Y., Zhang, S., Liu, Y., Zhang, L., Yu, Y., You, Y., Chen, X., Zhu, D. & Cheng, A. (2019). Role of the gldK gene in the virulence of Riemerella anatipestifer. Poultry Science, 98, 2414–2421.
  • Zhu, H., Zhang, Z., Long, S., Du, J., Fan, J. & Peng, X. (2018). Synthesis of an ultrasensitive BODIPY-derived fluorescent probe for detecting HOCl in live cells. Nature Protocols, 13, 2348–2361.
  • Zhu, Y., Thomas, F., Larocque, R., Li, N., Duffieux, D., Cladière, L., Souchaud, F., Michel, G. & McBride, M.J. (2017). Genetic analyses unravel the crucial role of a horizontally acquired alginate lyase for brown algal biomass degradation by Zobellia galactanivorans. Environmental Microbiology, 19, 2164–2181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.