48
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Dietary inclusion of phytase and stimbiotic decreases mortality and lameness in a wire ramp challenge model in broilers

, , , &
Received 07 Feb 2024, Accepted 20 May 2024, Published online: 26 Jun 2024

References

  • Abudabos, A.M., Samara, E.M., Hussein, E.O.S., Al-Ghadi, M.a.Q. & Al-Atiyat, R.M. (2013). Impacts of stocking density on the performance and welfare of broiler chickens. Italian Journal of Animal Science, 12, e11.
  • Al-Qahtani, M., Ahiwe, E.U., Abdallh, M.E., Chang'a, E.P., Gausi, H., Bedford, M.R. & Iji, P.A. (2021). Endogenous enzyme activities and tibia bone development of broiler chickens fed wheat-based diets supplemented with xylanase, β-glucanase and phytase. Animal Bioscience, 34, 1049–1060.
  • Arnett, T. (2003). Regulation of bone cell function by acid–base balance. Proceedings of the Nutrition Society, 62, 511–520.
  • Averós, X. & Estevez, I. (2018). Meta-analysis of the effects of intensive rearing environments on the performance and welfare of broiler chickens. Poultry Science, 97, 3767–3785.
  • Baker, J.T., Duarte, M.E., Holanda, D.M. & Kim, S.W. (2021). Friend or foe? Impacts of dietary xylans, xylooligosaccharides, and xylanases on intestinal health and growth performance of monogastric animals. Animals, 11, 609.
  • Baxter, M.F.A., Greene, E.S., Kidd, M.T., Tellez-Isaias, G., Orlowski, S. & Dridi, S. (2020). Water amino acid-chelated trace mineral supplementation decreases circulating and intestinal HSP70 and proinflammatory cytokine gene expression in heat-stressed broiler chickens. Journal of Animal Science, 98, 1–13.
  • Bedford, M.R. (2000). Exogenous enzymes in monogastric nutrition — their current value and future benefits. Animal Feed Science and Technology, 86, 1–13.
  • Bedford, M.R. (2002). The role of carbohydrases in feedstuff digestion. In J.M. McNab & K.N. Boorman (Eds.), Poultry Feedstuffs: Supply, Composition and Nutritive Value (pp. 319–336). Oxon: CABI Publishing.
  • Bedford, M.R. (2018). The evolution and application of enzymes in the animal feed industry: the role of data interpretation. British Poultry Science, 59, 486–493.
  • Bedford, M.R. & Cowieson, A.J. (2012). Exogenous enzymes and their effects on intestinal microbiology. Animal Feed Science and Technology, 173, 76–85.
  • Bedford, M.R. & Rousseau, X. (2017). Recent findings regarding calcium and phytase in poultry nutrition. Animal Production Science, 57, 2311–2316.
  • Bradshaw, R.H., Kirkden, R.D. & Broom, D.M. (2002). A review of the aetiology and pathology of leg weakness in broilers in relation to welfare. Avian and Poultry Biology Reviews, 13, 45–103.
  • Brickett, K.E., Dahiya, J.P., Classen, H.L., Annett, C.B. & Gomis, S. (2007). The impact of nutrient density, feed form, and photoperiod on the walking ability and skeletal quality of broiler chickens. Poultry Science, 86, 2117–2125.
  • Brighton, C.T., Sennett, B.J., Farmer, J.C., Iannotti, J.P., Hansen, C.A., Williams, J.L. & Williamson, J. (1992). The inositol phosphate-pathway as a mediator in the proliferative response of rat calvarial bone-cells to cyclical biaxial mechanical strain. Journal of Orthopaedic Research, 10, 385–393.
  • Broch, J., Dos Santos, E.C., Damasceno, J.L., Nesello, P.d.O., de Souza, C., Eyng, C., Pesti, G.M. & Nunes, R.V. (2020). Phytase and phytate interactions on broilers’ diet at 21 days of age. Journal of Applied Poultry Research, 29, 240–250.
  • Cauble, R.N., Greene, E.S., Orlowski, S., Walk, C., Bedford, M., Apple, J., Kidd, M.T. & Dridi, S. (2020). Research note: dietary phytase reduces broiler woody breast severity via potential modulation of breast muscle fatty acid profiles. Poultry Science, 99, 4009–4015.
  • Cho, H.M., González-Ortiz, G., Melo-Durán, D., Heo, J.M., Cordero, G., Bedford, M.R. & Kim, J.C. (2020). Stimbiotic supplementation improved performance and reduced inflammatory response via stimulating fiber fermenting microbiome in weaner pigs housed in a poor sanitary environment and fed an antibiotic-free low zinc oxide diet. PLoS One, 15, e0240264.
  • Coweison, A.J., Aureli, R., Guggenbuhl, P. & Fru-Nji, F. (2015). Possible involvement of myo-inositol in the physiological response of broilers to high doses of microbial phytase. Animal Production Science, 55, 710–719.
  • Dai, Z., Chung, S.K., Miao, D., Lau, K.S., Chan, A.W. & Kung, A.W. (2011). Sodium/myo-inositol cotransporter 1 and myo-inositol are essential for osteogenesis and bone formation. Journal of Bone and Mineral Research, 26, 582–590.
  • Dinev, I. (2009). Clinical and morphological investigations on the prevalence of lameness associated with femoral head necrosis in broilers. British Poultry Science, 50, 284–290.
  • Ebringerová, A., Hromádková, Z. & Heinze, T. (2005). Hemicellulose. In T. Heinze (Ed.), Polysaccharides I: Structure, Characterization and Use (pp. 1–67). Berlin: Springer.
  • Edwards, D.F., 3rd, Miller, C.J., Quintana-Martinez, A., Wright, C.S., Prideaux, M., Atkins, G.J., Thompson, W.R. & Clinkenbeard, E.L. (2021). Differential iron requirements for osteoblast and adipocyte differentiation. JBMR Plus, 5, e10529.
  • Elkin, L.A., Kay, M., Higgins, J.J. & Wobbrock, J.O. (2021). An aligned rank transform procedure for multifactor contrast tests. In The 34th Annual ACM Symposium on User Interface Software and Technology (pp. 754–768). Association for Computing Machinery, Inc. Virtual, Online.
  • Emami, N.K., Greene, E.S., Kogut, M.H. & Dridi, S. (2021). Heat stress and feed restriction distinctly affect performance, carcass and meat yield, intestinal integrity, and inflammatory (chemo)cytokines in broiler chickens. Frontiers in Physiology, 12, 707757.
  • Feddes, J.J., Emmanuel, E.J. & Zuidhoft, M.J. (2002). Broiler performance, body weight variance, feed and water intake, and carcass quality at different stocking densities. Poultry Science, 81, 774–779.
  • Fernandes, J.I.M., Horn, D., Ronconi, E.J., Buzim, R., Lima, F.K. & Pazdiora, D.A. (2019). Effects of phytase superdosing on digestibility and bone integrity of broilers. Journal of Applied Poultry Research, 28, 390–398.
  • Gao, H. & Zhou, Z. (2020). Effect of xylo-oligosaccharides supplementation by drinking water on the bone properties and related calcium transporters in growing mice. Nutrients, 12, 3542.
  • González-Ortiz, G., Gomes, G.A., Santos, T.T.d. & Bedford, M.R. (2019). New strategies influencing gut functionality and animal performance. In G. González-Ortiz, M.R. Bedford, K.E.B. Knudsen, C.M. Courtin & H.L. Classen (Eds.), The Value of Fibre (pp. 233–254). Wageningen, NL: Wageningen Academic Publishers.
  • Gonzalez-Uarquin, F., Molano, E., Heinrich, F., Sommerfeld, V., Rodehutscord, M. & Huber, K. (2020). Research note: jejunum phosphatases and systemic myo-inositol in broiler chickens fed without or with supplemented phytase. Poultry Science, 99, 5972–5976.
  • Granquist, E.G. Vasdal, G., De Jong, I.C. & Moe, R.O. (2019). Lameness and its relationship with health and production measures in broiler chickens. Animal, 13, 2365–2372.
  • Greene, E., Flees, J., Dadgar, S., Mallmann, B., Orlowski, S., Dhamad, A., Rochell, S., Kidd, M., Laurendon, C., Whitfield, H., Brearley, C., Rajaram, N., Walk, C. & Dridi, S. (2019). Quantum blue reduces the severity of woody breast myopathy via modulation of oxygen homeostasis-related genes in broiler chickens. Frontiers in Physiology, 10, 1251.
  • Greene, E., Mallmann, B., Wilson, J.W., Cowieson, A.J. & Dridi, S. (2020). Monitoring phytate hydrolysis using serial blood sampling and feather myo-inositol levels in broilers. Frontiers in Physiology, 11, 736.
  • Huang, S.-c., Zhang, L.-h., Zhang, J.-l., Rehman, M.U., Tong, X.-l., Qiu, G., Jiang, X., Iqbal, M., Shahzad, M. & Shen, Y.-q. (2018). Role and regulation of growth plate vascularization during coupling with osteogenesis in tibial dyschondroplasia of chickens. Scientific Reports, 8, 3680.
  • Jahan, A.A., González Ortiz, G., Moss, A.F., Bhuiyan, M.M. & Morgan, N.K. (2022). Role of supplemental oligosaccharides in poultry diets. World's Poultry Science Journal, 78, 615–639.
  • Jommuengbout, P., Pinitglang, S., Kyu, K.L. & Ratanakhanokchai, K. (2009). Substrate-binding site of family 11 xylanase from Bacillus firmus K-1 by molecular docking. Bioscience, Biotechnology, and Biochemistry, 73, 833–839.
  • Kaukonen, E., Norring, M. & Valros, A. (2017). Perches and elevated platforms in commercial broiler farms: use and effect on walking ability, incidence of tibial dyschondroplasia and bone mineral content. Animal, 11, 864–871.
  • Khan, S., Chaudhry, H., Butt, Y., Jameel, T. & Ahmad, F. (2018). The effect of phytase enzyme on the performance of broiler flock (a review). Poultry Science Journal, 1, 117–125.
  • Knowles, T.G., Kestin, S.C., Haslam, S.M., Brown, S.N., Green, L.E., Butterworth, A., Pope, S.J., Pfeiffer, D. & Nicol, C.J. (2008). Leg disorders in broiler chickens: prevalence, risk factors and prevention. PLoS One, 3, e1545.
  • Kuttappan, V.A., Hargis, B.M. & Owens, C.M. (2016). White striping and woody breast myopathies in the modern poultry industry: a review. Poultry Science, 95, 2724–2733.
  • Lee, S.A., Dunne, J., Febery, E., Brearley, C.A., Mottram, T. & Bedford, M.R. (2018). Exogenous phytase and xylanase exhibit opposing effects on real-time gizzard pH in broiler chickens. British Poultry Science, 59, 568–578.
  • Li, X.M., Zhang, M.H., Liu, S.M., Feng, J.H., Ma, D.D., Liu, Q.X., Zhou, Y., Wang, X.J. & Xing, S. (2019). Effects of stocking density on growth performance, growth regulatory factors, and endocrine hormones in broilers under appropriate environments. Poultry Science, 98, 6611–6617.
  • Livingston, A. (1994). Physiological basis for pain perception in animals. Veterinary Anaesthesia and Analgesia, 21, 73–77.
  • Maynard, C.J., Maynard, C.W., Mullenix, G.J., Ramser, A., Greene, E.S., Bedford, M.R. & Dridi, S. (2023). Impact of phytase supplementation on meat quality of heat-stressed broilers. Animals, 13, 2043.
  • McNamee, P.T. & Smyth, J.A. (2000). Bacterial chondronecrosis with osteomyelitis (‘femoral head necrosis’) of broiler chickens: a review. Avian Pathology, 29, 253–270.
  • McNamee, P.T., McCullagh, J.J., Thorp, B.H., Ball, H.J., Graham, D., McCullough, S.J., McConaghy, D. & Smyth, J.A. (1998). Study of leg weakness in two commercial broiler flocks. Veterinary Record, 143, 131–135.
  • Moita, V.H.C., Duarte, M.E. & Kim, S.W. (2021). Supplemental effects of phytase on modulation of mucosa-associated microbiota in the jejunum and the impacts on nutrient digestibility, intestinal morphology, and bone parameters in broiler chickens. Animals, 11, 3351.
  • Morgan, N.K., Kim, E. & González-Ortiz, G. (2024). Holo-analysis of the effects of xylo-oligosaccharides on broiler chicken performance. British Poultry Science, 65, 79–86.
  • Orlowski, S., Flees, J., Greene, E.S., Ashley, D., Lee, S.-O., Yang, F.L., Owens, C.M., Kidd, M., Anthony, N. & Dridi, S. (2018). Effects of phytogenic additives on meat quality traits in broiler chickens. Journal of Animal Science, 96, 3757–3767.
  • Ovseychik, E. & Lukashenko, V. (2022). The effects of stocking density on the productive performance, carcass and meat quality in cage-housed Smena-9 broilers. In A. Muratov & S. Ignateva (Eds.), Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East (AFE-2021) (pp. 925–932). Cham: Springer International Publishing.
  • Peixoto, J.d.O., Ibelli, A.M., Fernandes, L.T. & Ledur, M.C. (2020). Improving skeletal structure in meat-type chickens given fast weight gain and large breast yield through genetic selection. CABI Reviews, 15, 1–9.
  • Pekel, A.Y., Horn, N.L. & Adeola, O. (2017). The efficacy of dietary xylanase and phytase in broiler chickens fed expeller-extracted camelina meal. Poultry Science, 96, 98–107.
  • Pines, M. & Reshef, R. (2015). Poultry bone development and bone disorders. In C.G. Scanes (Ed.), Sturkie's Avian Physiology (6th ed.) (pp. 367–377). San Diego: Academic Press.
  • Pirgozliev, V. & Bedford, M.R. (2013). Energy utilisation and growth performance of chicken fed diets containing graded levels of supplementary bacterial phytase. British Journal of Nutrition, 109, 248–253.
  • Pufall, A., Harlander-Matauschek, A., Hunniford, M. & Widowski, T.M. (2021). Effects of rearing aviary style and genetic strain on the locomotion and musculoskeletal characteristics of layer pullets. Animals, 11, 634.
  • Qian, H., Veit, H.P., Kornegay, E.T., Ravindran, V. & Denbow, D.M. (1996). Effects of supplemental phytase and phosphorus on pistological and other tibial bone characteristics and performances of broilers fed semi-purified diets. Poultry Science, 75, 618–626.
  • Riddell, C. (1975). The development of tibial dyschondroplasia in broiler chickens. Avian Disease, 19, 443–462.
  • Santos, M.N., Widowski, T.M., Kiarie, E.G. Guerin, M.T., Edwards, A.M. & Torrey, S. (2022). In pursuit of a better broiler: tibial morphology, breaking strength, and ash content in conventional and slower-growing strains of broiler chickens. Poultry Science, 101, 101755.
  • Scheideler, S. & Ferket, P. (2000). Phytase in broiler rations-effects on carcass yields and incidence of tribal dyschondroplasia. Journal of Applied Poultry Research, 9, 468–475.
  • Sebastian, S., Touchburn, S. & Chavez, E. (1998). Implications of phytic acid and supplemental microbial phytase in poultry nutrition: a review. World's Poultry Science Journal, 54, 27–47.
  • Sirri, F., Maiorano, G., Tavaniello, S., Chen, J., Petracci, M. & Meluzzi, A. (2016). Effect of different levels of dietary zinc, manganese, and copper from organic or inorganic sources on performance, bacterial chondronecrosis, intramuscular collagen characteristics, and occurrence of meat quality defects of broiler chickens. Poultry Science, 95, 1813–1824.
  • Stahl, C.H., Han, Y.M., Roneker, K.R., House, W.A. & Lei, X.G. (1999). Phytase improves iron bioavailability for hemoglobin synthesis in young pigs. Journal of Animal Science, 77, 2135–2142.
  • Sullivan, T.W. (1994). Skeletal problems in poultry: estimated annual cost and descriptions. Poultry Science, 73, 879–882.
  • Taheri, H.R. & Abbasi, M.M. (2020). Effect of high-dose phytase and low calcium concentration on performance of broiler chicken given diet severely limited in nonphytate phosphorus. Journal of Applied Poultry Research, 29, 817–829.
  • Tang, H., Gao, X., Ji, F., Tong, S. & Li, X. (2012). Effects of a thermostable phytase on the growth performance and bone mineralization of broilers. Journal of Applied Poultry Research, 21, 476–483.
  • Valente Jr, D.T., Genova, J.L., Kim, S.W., Saraiva, A. & Rocha, G.C. (2024). Carbohydrases and phytase in poultry and pig nutrition: a review beyond the nutrients and energy matrix. Animals, 14, 226.
  • Valhmu, W.B. & Raia, F.J. (2002). Myo-inositol 1,4,5-trisphosphate and Ca2+/calmodulin-dependent factors mediate transduction of compression-induced signals in bovine articular chondrocytes. Biochemical Journal, 361, 689–696.
  • Vasdal, G., Moe, R., De Jong, I. & Granquist, E. (2018). The relationship between measures of fear of humans and lameness in broiler chicken flocks. Animal, 12, 334–339.
  • Walters, H.G., Coelho, M., Coufal, C.D. & Lee, J.T. (2019). Effects of increasing phytase inclusion levels on broiler performance, nutrient digestibility, and bone mineralization in low-phosphorus diets. Journal of Applied Poultry Research, 28, 1210–1225.
  • Wang, J., Cao, H., Bao, C., Liu, Y., Dong, B., Wang, C., Shang, Z., Cao, Y. & Liu, S. (2021). Effects of xylanase in corn- or wheat-based diets on cecal microbiota of broilers. Frontiers in Microbiology, 12, 757066.
  • Weimer, S.L., Wideman, R.F., Scanes, C.G., Mauromoustakos, A., Christensen, K.D. & Vizzier-Thaxton, Y. (2018). An evaluation of methods for measuring stress in broiler chickens. Poultry Science, 97, 3381–3389.
  • Wideman, R.F. (2014). Bacterial chondronecrosis with osteomyelitis and lameness in broilers: pathogenesis, experimental models, and preventative treatments. In W. Abdelrahman (Ed.), Probiotics in Poultry Production, Concept and Applications (pp. 91–128). Sheffield: 5 m Publishing Ltd.
  • Wideman, R.F. (2016). Bacterial chondronecrosis with osteomyelitis and lameness in broilers: a review. Poultry Science, 95, 325–344.
  • Wideman, R.F. & Prisby, R.D. (2012). Bone circulatory disturbances in the development of spontaneous bacterial chondronecrosis with osteomyelitis: a translational model for the pathogenesis of femoral head necrosis. Frontiersin Endocrinology, 3, 183.
  • Wideman, R.F., Al-Rubaye, A., Gilley, A., Reynolds, D., Lester, H., Yoho, D., Hughes, J. & Pevzner, I. (2013). Susceptibility of 4 commercial broiler crosses to lameness attributable to bacterial chondronecrosis with osteomyelitis. Poultry Science, 92, 2311–2325.
  • Wideman, R.F., Al-Rubaye, A., Kwon, Y.M., Blankenship, J., Lester, H., Mitchell, K.N., Pevzner, I.Y., Lohrmann, T. & Schleifer, J. (2015). Prophylactic administration of a combined prebiotic and probiotic, or therapeutic administration of enrofloxacin, to reduce the incidence of bacterial chondronecrosis with osteomyelitis in broilers. Poultry Science, 94, 25–36.
  • Wideman, R.F., Al-Rubaye, A., Reynolds, D., Yoho, D., Lester, H., Spencer, C., Hughes, J.D. & Pevzner, I.Y. (2014). Bacterial chondronecrosis with osteomyelitis in broilers: influence of sires and straight-run versus sex-separate rearing. Poultry Science, 93, 1675–1687.
  • Wideman, R.F., Blankenship, J., Pevzner, I.Y. & Turner, B.J. (2015). Efficacy of 25-OH vitamin D3 prophylactic administration for reducing lameness in broilers grown on wire flooring. Poultry Science, 94, 1821–1827.
  • Wideman, R.F., Hamal, K.R., Stark, J.M., Blankenship, J., Lester, H., Mitchell, K.N., Lorenzoni, G. & Pevzner, I. (2012). A wire-flooring model for inducing lameness in broilers: evaluation of probiotics as a prophylactic treatment. Poultry Science, 91, 870–883.
  • Wijesurendra, D.S., Chamings, A.N., Bushell, R.N., Rourke, D.O., Stevenson, M., Marenda, M.S., Noormohammadi, A.H. & Stent, A. (2017). Pathological and microbiological investigations into cases of bacterial chondronecrosis and osteomyelitis in broiler poultry. Avian Pathology, 46, 683–694.
  • Wobbrock, J.O., Findlater, L., Gergle, D. & Higgins, J.J. (2011). The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 143–146). Vancouver, BC: Association for Computing Machinery.
  • Zhao, G.Y., Zhao, L.P., He, Y.F., Li, G.F., Gao, C., Li, K. & Xu, Y.J. (2012). A comparison of the biological activities of human osteoblast hFOB1.19 between iron excess and iron deficiency. Biological Trace Elemene Research, 150, 487–495.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.