33
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Three-part passive constitutive laws for the aorta in simple elongation

Pages 397-409 | Published online: 09 Jul 2009

References

  • Boudoulas H., Wooley C. F. Aortic function. Functional Abnormalities of the Aorta, H. Boudoulas, P. K. Toutouzas, C. F. Wooley. Futura, New York 1996
  • McDonald's Blood Flow in Arteries. Theoretical, Experimental and Clinical Principles, W. W. Nichols, M. F. O'Rourke. Oxford University Press, New York 1990
  • Biomechanics: Mechanical Properties of Living Tissues, Y. C. Fung. Springer, New York 1993
  • Cardiovascular Solid Mechanics: Cells, Tissues, and Organs, J. D. Humphrey. Springer, New York 2002
  • Fung Y. C. Elasticity of soft tissues in simple elongation. American Journal of Physiology 1967; 213: 1532–1544
  • Fung Y. C. Biorheology of soft tissues. Biorheology 1973; 10: 139–155
  • Tanaka T. T., Fung Y. C. Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. Journal of Biomechanics 1974; 7: 357–370
  • Hayashi K., Washizu T., Tsushima N., Kirali R. J., Nose Y. Mechanical properties of aortas and pulmonary arteries of calves implanted with cardiac prostheses. Journal of Biomechanics 1981; 14: 173–182
  • Hayashi K. Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls. Journal of Biomechanical Engineering 1993; 115: 481–488
  • Sherebrin M. H., Hegney J. E., Roach M. R. Effects of age on the anisotropy of the descending human thoracic aorta determined by uniaxial tensile testing and digestion by NaOH under load. Canadian Journal of Physiology and Pharmacology 1989; 67: 871–878
  • He C. M., Roach M. R. The composition and mechanical properties of abdominal aortic aneurysms. Journal of Vascular Surgery 1994; 20: 6–13
  • Raghavan M. L., Vorp D. A. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: Identification of a finite strain constitutive model and evaluation of its applicability. Journal of Biomechanics 2000; 33: 475–482
  • Vorp D. A., Schiro B. J., Ehrlich M. P., Juvonen T. S., Ergin M. A., Griffith B. P. Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Annals of Thoracic Surgery 2003; 75: 1210–1214
  • Sokolis D. P., Boudoulas H., Karayannacos P. E. Assessment of the aortic stress – strain relation in uniaxial tension. Journal of Biomechanics 2002; 35: 1213–1223
  • Sokolis D. P., Kefaloyannis Emm. M., Kouloukoussa M., Marinos E., Boudoulas H., Karayannacos P. E. A structural basis for the aortic stress – strain relation in uniaxial tension. Journal of Biomechanics 2005; 39: 1651–1662
  • Angouras D., Sokolis D. P., Dosios T., Kostomitsopoulos N., Boudoulas H., Skalkeas G., Karayannacos P. E. Effect of impaired vasa vasorum flow on the structure and mechanics of the thoracic aorta: implications for the pathogenesis of aortic dissection. European Journal of Cardiothoracic Surgery 2000; 17: 468–473
  • Emery J. L., Omens J. H., McCulloch A. D. Strain softening in rat left ventricular myocardium. Journal of Biomechanical Engineering 1997; 119: 6–12
  • Gregersen H., Emery J., McCulloch A. D. History-dependent mechanical behavior of the guinea pig small intestine. Annals of Biomedical Engineering 1998; 26: 1–9
  • Weizsacker H. W., Pascale K., Kenner T. Elasticity of rat thoracic aortas in simple elongation. Biomedizinische Technik 1984; 29: 30–38
  • Glagov S., Wolinsky H. Physiology: Aortic wall as a ‘two phase’ material. Nature 1963; 199: 606–608
  • Samila Z. J., Carter S. A. The effect of age on the unfolding of elastin lamellae and collagen fibers with stretch in human carotid arteries. Canadian Journal of Physiology and Pharmacology 1981; 59: 1050–1057
  • Clark J. M., Glagov S. Transmural organization of the arterial media. The lamellar unit revisited. Arteriosclerosis 1985; 5: 19–34
  • Roach M. R., Burton A. C. The reason for the shape of the distensibility curves of arteries. Canadian Journal of Biochemistry 1957; 35: 681–690
  • Dobrin P. B., Canfield T. Elastase, collagenase, and the biaxial elastic properties of dog carotid artery. American Journal of Physiology 1984; 237: H124–H131
  • Raghavan M. L., Webster M. W., Vorp D. A. Ex vivo biomechanical behavior of abdominal aortic aneurysm: Assessment using a new mathematical model. Annals of Biomedical Engineering 1996; 24: 573–582
  • Holzapfel G. A., Eberlein R., Wriggers P., Weizsacker H. W. A new axisymmetrical membrane element for anisotropic, finite strain analysis of arteries. Communications in Numerical Methods in Engineering 1996; 12: 507–517
  • Holzapfel G. A., Gasser T. C., Ogden R. W. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity 2000; 61: 1–48
  • Zulliger M. A., Fridez P., Hayashi K., Stergiopulos N. A strain energy function for arteries accounting for wall composition and structure. Journal of Biomechanics 2004; 37: 989–1000
  • Chuong C. J., Fung Y. C. Three-dimensional stress distribution in arteries. Journal of Biomechanical Engineering 1983; 105: 268–274
  • Armentano R. L., Barra J. G., Levenson J., Simon A, Pichel R. H. Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circulation Research 1995; 76: 468–478
  • Bank A. J., Wang H., Holte J. E., Mullen K., Shammas R., Kubo S. H. Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus. Circulation 1996; 94: 3263–3270
  • Wuyts F. L., Vanhuyse V. J., Langewouters G. J., Decraemer W. F., Raman E. R., Buyle S. Elastic properties of human aortas in relation to age and atherosclerosis: a structural model. Physics in Medicine and Biology 1995; 40: 1577–1597
  • Carmines D. V., McElhaney J. H., Stack R. A piece-wise non-linear elastic stress expression of human and pig coronary arteries tested in vitro. Journal of Biomechanics 1991; 24: 899–906
  • Humphrey J. D. An evaluation of pseudoelastic descriptors used in arterial mechanics. Journal of Biomechanical Engineering 1999; 121: 259–262
  • Vito R. P., Dixon S. A. Blood vessel constitutive models—1995 – 2002. Annual Review of Biomedical Engineering 2003; 5: 413–439

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.