133
Views
5
CrossRef citations to date
0
Altmetric
Articles

Coupled fluid-wall modelling of steady flow in stenotic carotid arteries

, , &
Pages 544-550 | Published online: 15 Sep 2009

References

  • Slager C. J., Wentzel J. J., Gijsen F. J.H., Schuurbiers J. C.H., van der Wal A. C., van der Steen A. F.W., Serruys P. W. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nature Clinical Practice Cardiovascular Medicine 2005; 2: 401–407
  • Slager C. J., Wentzel J. J., Gijsen F. J.H., Thury A., van der Wal A. C., Schaar J. A., Serruys P. W. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nature Clinical Practice Cardiovascular Medicine 2005; 2: 456–464
  • Deplano V., Siouffi M. Experimental and numerical study of pulsatile flows through stenosis: wall shear stress analysis. Journal of Biomechanics 1999; 32: 1081–1090
  • Tang D., Yang C., Ku D. N. A 3-D thin-wall model with fluid–structure interactions for blood flow in carotid arteries with symmetric and asymmetric stenoses. Computers & Structures 1999; 72: 357–377
  • Tang D., Yang C. K., Shunichi K., David N. Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid–wall interactions. Journal of Biomechanical Engineering 2001; 123: 548–557
  • Tang D., Yang C. K., Shunichi Z., Jie V., Raymond P. Effect of stenosis asymmetry on blood flow and artery compression: a three-dimensional fluid-structure interaction model. Annals of Biomedical Engineering 2003; 31: 1182–1193
  • Shim E. B., Kamm R. D. Numerical simulation of steady flow in a compliant tube or channel with tapered wall thickness. Journal of Fluids and Structures 2002; 16: 1009–1027
  • Tang D., Yang C. K., Shunichi K., David N. Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid–structure interactions (FSI) models. Journal of Biomechanical Engineering 2004; 126: 363–370
  • Varghese S. S., Frankel S. H. Numerical modeling of pulsatile turbulent flow in stenotic vessels. Journal of Biomechanical Engineering 2003; 125: 445–460
  • Tang D., Yang C. W., Homer K., Shunichi K., David N. Simulating cyclic artery compression using a 3D unsteady model with fluid-structure interactions. Computers & Structures 2002; 80: 1651–1665
  • Banerjee R. K., Back L. H., Back M. R.C., Young I. Physiological flow simulation in residual human stenoses after coronary angioplasty. Journal of Biomechanical Engineering 2000; 122: 310–320
  • Bertram C. D., Elliott N. S.J. Flow-rate limitation in a uniform thin-walled collapsible tube, with comparison to a uniform thick-walled tube and a tube of tapering thickness. Journal of Fluids and Structures 2003; 17: 541–559
  • Bautista L. E. Inflammation, endothelial dysfunction, and the risk of high blood pressure: epidemiologic and biological evidence. Journal of Human Hypertension 2003; 17: 223–230
  • Holme P. A., Orvim U. H., Maria J. A.G., Solum N. O., Brosstad F. R., Barstad R. M.S., Kjell S. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arteriosclerosis, Thrombosis and Vascular Biology 1997; 17: 646–653
  • Guyton A. C., Adkins L. H. Quantitative aspects of the collapse factor in relation to venous return. American Journal of Physiology 1954; 177: 523–527
  • Kobayashi S., Tang D., Ku D. N. Collapse in high-grade stenosis during pulsatile flow experiments. JSME International Journal Series C 2004; 47: 1010–1018
  • Wang J. J., Parker K. H. Wave propagation in a model of the arterial circulation. Journal of Biomechanics 2004; 37: 457–470
  • Moayeri M. S., Zendehbudi G. R. Effects of elastic property of the wall on flow characteristics through arterial stenoses. Journal of Biomechanics 2003; 36: 525–535
  • Nichols W. W., O'Rourke M. F., McDonald D. A. McDonald's Blood Flow in Arteries. Lea & Febiger, Springer-Verlag New York Inc. 1990
  • Li M. X., Beech-Brandt J. J., John L. R., Hoskins P. R., Easson W. J. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses. Journal of Biomechanics 2007; 40: 3715–3724
  • Fung Y. Biomechanics: Circulation. Springer, Berlin, Heidelberg, New York, 1997. 1997
  • Ruggeri Z. M. Platelets in atherothrombosis. Nature Medicine 2002; 8: 1227–1234
  • Stone P. H., Coskun A. U.Y., Yerem K., Scott P., Jeffrey J. K., Richard E. F., Charles L. Prediction of sites of coronary atherosclerosis progression: In vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Current Opinion in Cardiology 2003; 18: 458–470
  • Carew T. E., Patel D. J. Effect of tensile and shear stress on intimal permeability of the left coronary artery in dogs. Atherosclerosis 1973; 18: 179–189
  • Ku D. A.N., Zeigler M., Stewart M. A study of predicted and experimental wall collapse in models of highly stenotic arteries. 2nd International Symposium on Biofluid Mechanics. Karger Scientific, Munich 1989; 409–416, Proceedings of the Second International Symposium on Biofluid Mechanics and biorheology, Munich, Germany 1989
  • Lee K. W., Wood N. B., Xu X. Y. Ultrasound image-based computer model of a common carotid artery with a plaque. Medical Engineering & Physics 2004; 26: 823–840

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.