285
Views
9
CrossRef citations to date
0
Altmetric
Research Article

A review on computer-aided recent developments for automatic detection of diabetic retinopathy

, &
Pages 87-99 | Received 16 Jul 2018, Accepted 16 Dec 2018, Published online: 14 Jun 2019

References

  • Sopharak A, Uyyanonvara B, Barman, S. Simple hybrid method for fine microaneurysm detection from not-dilated diabetic retinopathy retinal images. Comput Med Imaging Graph. 2013;37:394–402.
  • Welikala RA, Dehmeshki J, Hoppe A, et al. Automated detection of proliferative diabetic retinopathy using a modified line operator and dual classification. Comput Methods Programs Biomed. 2014;114:247–261.
  • Akram MU, Khalid S, Tariq A, et al. Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput Biol Med. 2014;45:161–171.
  • Mookiah MRK, Acharya UR, Martis RJ, et al. Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach. Knowl Based Syst. 2013;39:9–22.
  • Welikala RA, Fraz MM, Dehmeshki J, et al. Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy. Comput Med Imaging Graph. 2015;43:64–77.
  • Quellec G, Lamard M, Abramoff MD, et al. A multiple-instance learning framework for diabetic retinopathy screening. Med Image Anal. 2012;16:1228–1240.
  • Roychowdhury S, Koozekanani DD, Parhi KK. DREAM: diabetic retinopathy analysis using machine learning. IEEE J Biomed Health Inform. 2013;18:1717–1728.
  • Ranamuka NG, Meegama RGN. Detection of hard exudates from diabetic retinopathy images using fuzzy logic. IET Image Process. 2013;7:121–130.
  • Ram K, Joshi GD, Sivaswamy J. A successive clutter-rejection-based approach for early detection of diabetic retinopathy. IEEE Trans Biomed Eng. 2011;58:664–673.
  • Patil P, Shettar P, Narayankar P, Patil M. An efficient method of detecting exudates in diabetic retinopathy: using texture edge features. 2016 International Conference on Advances in Computing, Communications and Informatics, 2016, Sep 21; p. 1188–1191.
  • Prasad DK, Vibha L, Venugopal KR. Early detection of diabetic retinopathy from digital retinal fundus images. 2015 IEEE Recent Advances in Intelligent Computational Systems, 2015 Dec 12; p. 240–245.
  • Franklin SW, Rajan SE. Diagnosis of diabetic retinopathy by employing image processing technique to detect exudates in retinal images. IET Image Process. 2014;8:601–609.
  • Osareh A, Shadgar B, Markham R. A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images. IEEE Trans Inform Technol Biomed. 2009;13:535–545.
  • Narasimha-Iyer H, Can A, Roysam B, et al. Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy. IEEE Trans Biomed Eng. 2006;53:1084–1098.
  • Zhang L, Li Q, You J, et al. A modified matched filter with double-sided thresholding for screening proliferative diabetic retinopathy. IEEE Trans Inf Technol Biomed. 2009;13:528–534.
  • Antal B, Hajdu A. An ensemble-based system for microaneurysm detection and diabetic retinopathy grading. IEEE Trans Biomed Eng. 2012;59:1720–1726.
  • Sharath Kumar PN, Deepak RU, Sathar A, Sahasranamam V, et al. Automated detection system for diabetic retinopathy using two field fundus photography. Procedia Comput Sci. 2016;93:486–494.
  • Pratt H, Coenen F, Broadbent DM, et al. Convolutional neural networks for diabetic retinopathy. Procedia Comput Sci. 2016;90:200–205.
  • Zhang B, Vijaya Kumar BVK, Zhang D. Detecting diabetes mellitus and non-proliferative diabetic retinopathy using tongue color, texture, and geometry features. IEEE Trans Biomed Eng. 2014;61:491–501.
  • Agurto C, Murray V, Barriga E. Multiscale AM-FM methods for diabetic retinopathy lesion detection. IEEE Trans Med Imaging. 2010;29:502–512.
  • Seoud L, Hurtut T, Chelbi J, et al. Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans Med Imaging. 2016;35:1116–1126.
  • Pratumgul W, Sa-ngiamvibool W. The prototype of computer-assisted for screening and identifying severity of diabetic retinopathy automatically from color fundus images for mHealth system in Thailand. Procedia Comput Sci. 2016;86:457–460.
  • Mahendran G, Dhanasekaran R. Investigation of the severity level of diabetic retinopathy using supervised classifier algorithms. Comput Electr Eng. 2015;45:321–323.
  • Prentasic P, Loncaric S. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput Methods Programs Biomed. 2016;137:281–292.
  • Imani E, Pourreza H-R, Banaee T. Fully automated diabetic retinopathy screening using morphological component analysis. Comput Med Imaging Graph. 2015;43:78–88.
  • Li C-M, Du Y-C, Wu J-X, et al. Synchronizing chaotification with support vector machine and wolfpack search algorithm for estimation of peripheral vascular occlusion in diabetes mellitus. Biomed Signal Process Control. 2014;9:45–55.
  • de Almeida JDS, Silva AC, Teixeira JAM, et al. Surgical planning for horizontal strabismus using Support Vector Regression. Comput Biol Med. 2015;63:178–186.
  • Chengzhang Z, Beiji Z, Rongchang Z, Jinkai C, Xuanchu D, Zailiang C, Yixiong L, Retinal vessel segmentation in colour fundus images using Extreme Learning Machine. Comput Med Imaging Graph. 2016;55:68–77.
  • Yun WL, Rajendra Acharya U, Venkatesh YV, et al. Identification of different stages of diabetic retinopathy using retinal optical images. Inf Sci. 2008;178:106–121.
  • Kose C, Şevik U, Ikibas C, et al. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images. Comput Methods Programs Biomed. 2012;107:274–293.
  • Varma KVSRP, Rao AA, Mahalakshmi TS, et al. A computational intelligence technique for the effective diagnosis ofdiabetic patients using principal component analysis (PCA) andmodified fuzzy SLIQ decision tree approach. Appl Soft Comput. 2016;49:137–145.
  • Sopharak A, Uyyanonvara B, Barman S, et al. Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Comput Med Imaging Graph. 2008;32:720–727.
  • Arenas-Cavalli JT, Rıos SA, Pola M, et al. A web-based platform for automated diabetic retinopathy screening. 19th International Conference on Knowledge Based and Intelligent Information and Engineering Systems, Vol. 60; p. 557–563; 2015.
  • Kavitha M, Palani S. Blood vessel, optical disk and damage area-based features for diabetic detection from retinal images. Arab J Sci Eng. 2014;39:7059–7071.
  • Asad AH, Azar AT, Hassaanien AEO. A comparative study on feature selection for retinal vessel segmentation using ant colony system. Adv Intell Syst Comput. 2014;235:1–11.
  • Sim DA, Keane PA, Tufail A, et al. Automated retinal image analysis for diabetic retinopathy in telemedicine. Microvasc Complications—Retinopathy. 2015;15:1–14.
  • Zaki WMDW, Zulkifley MA, Hussain A, et al. Diabetic retinopathy assessment: towards an automated system. Biomed Signal Process Control. 2016;24:72–82.
  • Zhang X, Thibault G, Decencière E, et al. Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med Image Anal. 2014;18:1026–1043.
  • Akram MU, Khalid S, Khan SA. Identification and classification of microaneurysms for early detection of diabetic retinopathy. Pattern Recognit. 2013;46:107–116.
  • Niemeijer M, Abramoff MD, van Ginneken B. Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening. Med Image Anal. 2006;10:888–898.
  • Cho BH, Yu H, Kim K-W, et al. Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artif Intell Med. 2008;42:37–53.
  • Franklin SW, Rajan SE. Computerized screening of diabetic retinopathy employing blood vessel segmentation in retinal images. Biocybern Biomed Eng. 2014;34:117–124.
  • Medhi JP, Dandapat S. An effective fovea detection and automatic assessment of diabetic maculopathy in color fundus images. Comput Biol Med. 2016;74:30–44.
  • Sigurðsson EM, Valero S, Benediktsson JA, et al. Automatic retinal vessel extraction based on directional mathematical morphology and fuzzy classification. Pattern Recognit Lett. 2013;47:1–10.
  • Sorrentino FS, Allkabes M, Salsini G, et al. The importance of glial cells in the homeostasis of the retinal micro environment and their pivotal role in the course of diabetic retinopathy. Life Sci. 2016;162:54–59.
  • Tavakoli M, Shahri RP, Pourreza H, et al. A complementary method for automated detection of microaneurysms in fluorescein angiography fundus images to assess diabetic retinopathy. Pattern Recognit. 2013;46:2740–2753.
  • Vega R, Sanchez-Ante G, Falcon-Morales LE, et al. Retinal vessel extraction using Lattice Neural Networks with dendritic processing. Comput Biol Med. 2014;58:1–11.
  • García M, Lopez MI, Alvarez D, et al. Assessment of four neural network based classifiers to automatically detect red lesions in retinal images. Med Eng Phys. 2010;32:1085–1093.
  • Saleh MD, Eswaran C. An automated decision-support system for non-proliferative diabetic retinopathy disease based on MAs and Has detection. Comput Methods Programs Biomed. 2012;108:186–196.
  • Rao PV, Gayathri R, Sunitha R, A novel approach for design and analysis of diabetic retinopathy glaucoma detection using cup to disk ration and ANN. 2nd International Conference on Nanomaterials and Technologies, Vol. 10; 2015; p. 446–454.
  • García M, Sánchez CI, López MI, et al. Neural network based detection of hard exudates in retinal images. Comput Methods Programs Biomed. 2009;93:9–19.
  • Antal B, Hajdu A. An ensemble-based system for automatic screening of diabetic retinopathy. Knowl Based Syst. 2014;60:1–8.
  • Sil Kar S, Maity SP. Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy. Comput Methods Programs Biomed. 2016;133:111–132.
  • Niemeijer M, Abramoff MD, van Ginneken B. Information fusion for diabetic retinopathy CAD in digital color fundus photographs. IEEE Trans Med Imaging. 2009;28:775–785.
  • Taylor DJ, Goatman K, Gregory AA, Histed M, et al. Image-quality standardization for diabetic retinopathy screening. Expert Rev Ophthalmol. 2009;4:469–476.
  • Dutta MK, Parthasarathi M, Ganguly S, et al. An efficient image processing based technique for comprehensive detection and grading of nonproliferative diabetic retinopathy from fundus images. Comput Methods Biomech Biomed Eng Imaging Vis. 2015;5:1–13.
  • Aquino A, Gegúndez-Arias ME, Marín D. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans Med Imaging. 2010;29:1860–1869.
  • Lazar I, Hajdu A. Retinal microaneurysm detection through local rotating cross-section profile analysis. IEEE Trans Med Imaging. 2013;32:400–407.
  • Harangi B, Hajdu A. Automatic exudate detection by fusing multiple active contours and region wise classification. Comput Biol Med. 2014;54:156–171.
  • Pires R, Jelinek HF, Wainer J, et al. Assessing the need for referral in automatic diabetic retinopathy detection. IEEE Trans Biomed Eng. 2013;60:3391–3398.
  • Walter T, Klein JC, Massin P, et al. A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans Med Imaging. 2002;21:1236–1243.
  • Stella Mary MCV, Rajsingh EB, Naik GR. Retinal fundus image analysis for diagnosis of glaucoma: a comprehensive survey. IEEE Access. 2016;4:4327–4354.
  • Aghamohamadian-Sharbaf M, Pourreza HR, Banaee T. A novel curvature-based algorithm for automatic grading of retinal blood vessel tortuosity. IEEE J Biomed Health Inform. 2016;20:586–595.
  • Agurto C, Murray V, Yu H, et al. A multiscale optimization approach to detect exudates in the macula. IEEE J Biomed Health Inform. 2014;18:1328–1336.
  • Tang L, Niemeijer M, Reinhardt JM, et al. Splat feature classification with application to retinal hemorrhage detection in fundus images. IEEE Trans Med Imaging. 2013;32:364–375.
  • Rocha A, Carvalho T, Jelinek HF, et al. Points of interest and visual dictionaries for automatic retinal lesion detection. IEEE Trans Biomed Eng. 2012;59:2244–2253.
  • Marin D, Aquino A, Gegundez-Arias ME, et al. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging. 2011;30:146–158.
  • Quellec G, Lamard M, Cazuguel G, et al. Case retrieval in medical databases by fusing heterogeneous information. IEEE Trans Med Imaging. 2011;30:108–118.
  • Li Q, Wang Y, Zhang J, et al. Quantitative analysis of protective effect of erythropoietin on diabetic retinal cells using molecular hyperspectral imaging technology. IEEE Trans Biomed Eng. 2010;57:1699–1706.
  • Grzywacz NM, de Juan J, Ferrone C, et al. Statistics of optical coherence tomography data from human retina. IEEE Trans Med Imaging. 2010;29:1224–1237.
  • Zana F, Klein JC. A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform. IEEE Trans Med Imaging. 1999;18:419–428.
  • Niemeijer M, van Ginneken B, Cree r MJ, et al. Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imag. 2010;29:185–195.
  • Quellec G, Lamard M, Josselin PM, et al. Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE Trans Med Imaging. 2008;27:1230–1241.
  • Yen GG, Leong WF. A sorting system for hierarchical grading of diabetic fundus images: a preliminary study. IEEE Trans Inf Technol Biomed. 2008;12:118–130.
  • Narasimha-Iyer H, Can A, Roysam B, et al. integrated analysis of vascular and nonvascular changes from color retinal fundus image sequences. IEEE Trans Biomed Eng. 2007;54:1436–1445.
  • Niemeijer M, Abramoff MD, van Ginneken B. segmentation of the optic disc, macula and vascular arch in fundus photographs. IEEE Trans Med Imaging. 2007;26:116–127.
  • Salazar-Gonzalez A, Kaba D, Li Y, et al. Segmentation of the blood vessels and optic disk in retinal images. IEEE J Biomed Health Inform. 2014;18:1874–1886.
  • Deepak KS, Sivaswamy J. Automatic assessment of macular edema from color retinal images. IEEE Trans Med Imaging. 2012;31:766–776.
  • Goatman KA, Fleming AD, Philip S, et al. detection of new vessels on the optic disc using retinal photographs. IEEE Trans Med Imaging. 2011;30:972–979.
  • Quellec G, Russell SR, Abramoff MD. optimal filter framework for automated, instantaneous detection of lesions in retinal images. IEEE Trans Med Imaging. 2011;30:523–533.
  • Abramoff MD, Garvin MK, Sonka M. retinal imaging and image analysis. IEEE Rev Biomed Eng. 2010;3:169–208.
  • Niemeijer M, van Ginneken B, Staal J, et al. Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging. 2005;24:584–592.
  • Staal J, Abramoff MD, Niemeijer M, et al. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging. 2004;23:501–509.
  • Li H, Chutatape O. Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng. 2004;51:246–254.
  • Yadav P. Indexing method for semantic information extraction from the medical ontology. Int J Eng Sci Res. 2015;3:1–10.
  • Yadav P. Mutual information-aided semantic approach for medical ontology construction. Int J Publ Probl Appl Eng Res. 2014;5:322–326. Vol.
  • De Giorgio A, Loscalzo RM, Ponte M, et al. An innovative mindfulness and educational care approach in an adult patient affected by gastroesophageal reflux: the IARA model. J Complement Integr Med. 2017;14.
  • Guadagni S, Clementi M, Valenti M, et al. Hypoxic abdominal stop-flow perfusion in the treatment of advanced pancreatic cancer: a phase II evaluation/trial. Eur J Surg Oncol. 2007;33:72–78.
  • Guadagni S, Kanavos E, Schietroma M, Tumori, et al. Selected hypoxic stop-flow perfusions: Indication and limits. Tumori 2006;92:402–406.
  • Mambrini A, Bassi C, Pacetti P, et al. Prognostic factors in patients with advanced pancreatic adenocarcinoma treated with intra-arterial chemotherapy. Pancreas. 2008;36:56–60.
  • Muller H, Guadagni S. Regional chemotherapy for carcinoma of the lung. Surg Oncol Clin of North Am. 2008;17:895–917.
  • Sherifi I. Impact of information systems in satisfying students of the university: case study from Epoka University. Eur J Business Social Sci. 2015;4:167–175.
  • Randive SN, Rahulkar AD, Senapati RK. LVP extraction and triplet-based segmentation for diabetic retinopathy recognition. Evol Intel. 2018;11:117–129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.