702
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Methodology and validation for identifying gait type using machine learning on IMU data

ORCID Icon & ORCID Icon
Pages 25-32 | Received 30 Sep 2018, Accepted 11 Mar 2019, Published online: 30 Apr 2019

References

  • Busse ME, Van Deursen RW, Wiles CM. Real-life step and activity measurement: reliability and validity. J Med Eng Technol. 2009;33:33–41.
  • Alsubheen SA, George AM, Baker A, Rohr LE, et al. Accuracy of the vivofit activity tracker. J Med Eng Technol. 2016;40:298–306.
  • Noah JA, Spierer DK, Gu J, et al. Comparison of steps and energy expenditure assessment in adults of fitbit tracker and ultra to the actical and indirect calorimetry. J Med Eng Technol. 2013;37:456–462.
  • Pober DM, Staudenmayer J, Raphael C, et al. Development of novel techniques to classify physical activity mode using accelerometers. Med Sci Sports Exerc. 2006;38:1626–1634.
  • Cleland I, Kikhia B, Nugent C, et al. Optimal placement of accelerometers for the detection of everyday activities. Sensors 2013;13:9183–9200.
  • Kwapisz JR, Weiss GM, Moore SA. Activity recognition using cell phone accelerometers. Sigkdd Explor Newsl. 2011;12:74–82.
  • Leong JY, Wong JE. Accuracy of three android-based pedometer applications in laboratory and free-living settings. J Sports Sci. 2017;35:14–21.
  • Mannini A, Intille SS, Rosenberger M, et al. Activity recognition using a single accelerometer placed at the wrist or ankle. Med Sci Sports Exerc. 2013;45:2193.
  • Rhudy MB, Mahoney JM. A comprehensive comparison of simple step counting techniques using wrist-and ankle-mounted accelerometer and gyroscope signals. J Med Eng Technol. 2018;42:236–243.
  • Gouwanda D, Senanayake SMNA. Periodical gait asymmetry assessment using real-time wireless gyroscopes gait monitoring system. J Med Eng Technol. 2011;35:432–440.
  • Mannini A, Sabatini AM. Gait phase detection and discrimination between walking-jogging activities using hidden Markov models applied to foot motion data from a gyroscope. Gait Posture. 2012;36:657–661.
  • Pärkkä J, Ermes M, Korpipää P, et al. Activity classification using realistic data from wearable sensors. IEEE Trans Inform Technol Biomed. 2006;10:119–128.
  • Darji ST, Kher RK. Artificial neural network-based classification of body movements in ambulatory ECG signal. J Med Eng Technol. 2013;37:535–540.
  • Dontje ML, de Groot M, Lengton RR, et al. Measuring steps with the fitbit activity tracker: an inter-device reliability study. J Med Eng Technol. 2015;39:286–290.
  • Eisenmann JC, Laurson KR, Wickel EE, Gentile D, et al. Utility of pedometer step recommendations for predicting overweight in children. Int J Obes. 2007;31:1179–1182.
  • Feldman E. Running and health. Integr Med Alert 2018;21:52–54.
  • Preece SJ, Goulermas JY, Kenney LPJ, et al. Activity identification using body-mounted sensors a review of classification techniques. Physiol Meas. 2009;30:R1–R33.
  • Mannini A, Sabatini AM. Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 2010;10:1154–1175.
  • Pirttikangas S, Fujinami K, Nakajima T. Feature selection and activity recognition from wearable sensors. In: Third International Symposium on Ubiquitious Computing Systems; October 11–13, Seoul, Korea; Berlin, Heidelberg: Springer; 2006. p. 516–527. Available from: https://link.springer.com/book/10.1007/11890348#about
  • Staudenmayer J, Pober D, Crouter S, et al. An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol. 2009;107:1300–1307.
  • Jeong G-M, Truong PH, Choi S-I. Classification of three types of walking activities regarding stairs using plantar pressure sensors. IEEE Sens J. 2017;17:2638–2639.
  • Begg RK, Palaniswami M, Owen B. Support vector machines for automated gait classification. IEEE Trans Biomed Eng. 2005;52:828–838.
  • Begg R, Kamruzzaman J. A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data. J Biomech. 2005;38:401–408.
  • Nakano T, Nukala BT, Tsay J, et al. Gaits classification of normal vs. patients by wireless gait sensor and support vector machine (SVM) classifier. Int J Software Innov (IJSI). 2017;5:17–29.
  • He B, Bai J, Zipunnikov VV, et al. Predicting human movement with multiple accelerometers using movelets. Med Sci. Sports Exerc. 2014;46:1859–1866.
  • Chowdhury AK, Tjondronegoro D, Chandran V, et al. Ensemble methods for classification of physical activities from wrist accelerometry. Med Sci. Sports Exerc. 2017;49(9):1965–1973.
  • Boulgouris NV, Plataniotis KN, Hatzinakos D. Gait recognition using dynamic time warping. In: 2004 IEEE 6th Workshop on Multimedia Signal Processing; 2004; Siena, Italy, IEEE: Piscataway, NJ. p. 263–266. Available from: https://ieeexplore.ieee.org/abstract/document/1436543
  • Rong L, Zhiguo D, Jianzhong Z, et al. Identification of individual walking patterns using gait acceleration. In: The 1st International Conference on Bioinformatics and Biomedical Engineering, 2007. ICBBE 2007; Wuhan, China; IEEE: Piscataway, NJ, 2007. p. 543–546. Available from: https://ieeexplore.ieee.org/abstract/document/4272626
  • Paiyarom S, Tungamchit P, Keinprasit R, et al. Activity monitoring system using dynamic time warping for the elderly and disabled people. In 2nd International Conference on Computer, Control and Communication, 2009; Karachi, Pakistan, IC4 2009; IEEE: Piscataway, NJ, 2009. p. 1–4. Available from: https://ieeexplore.ieee.org/abstract/document/4909158
  • Tahir NM, Manap HH. Parkinson disease gait classification based on machine learning approach. J Appl Sci. 2012;12:180–185.
  • Seifert AK, Zoubir AM, Amin MG. Radar classification of human gait abnormality based on sum-of-harmonics analysis. In Radar Conference (RadarConf18), Oklahoma City, OK; IEEE: Piscataway, NJ, 2018. p. 940–945. Available from: https://ieeexplore.ieee.org/abstract/document/8378687
  • Preece S, Goulermas JY, Kenney LP, et al. A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans Biomed Eng. 2009;56:871–879.
  • Fathi A, Mori G, Action recognition by learning mid-level motion features. In IEEE Conference on Computer Vision and Pattern Recognition, 2008, Anchorage, AK (CVPR 2008); IEEE: Piscataway, NJ, 2008. p. 1–8. Available from: https://ieeexplore.ieee.org/abstract/document/4587735
  • Fichou D, Morlock GE. Powerful artificial neural network for planar chromatographic image evaluation, shown for denoising and feature extraction. Anal Chem. 2018;90:6984–6991.
  • Lee J-A, Cho S-H, Lee Y-J, et al. Portable activity monitoring system for temporal parameters of gait cycles. J Med Syst. 2010;34:959–966.
  • Thorstensson A, Roberthson H. Adaptations to changing speed in human locomotion: speed of transition between walking and running. Acta Physiol. 1987;131:211–214.
  • O’Connor CM, Thorpe SK, O’Malley MJ, et al. Automatic detection of gait events using kinematic data. Gait Posture. 2007;25:469–474.
  • Abdi H. A neural network primer. J Biol Syst. 1994;2:247–281.
  • Hansen LK, Salamon P. Neural network ensembles. IEEE Trans Pattern Anal Machine Intell. 1990;12:993–1001.
  • Hall P. Theoretical comparison of bootstrap confidence intervals. Ann Stat. 1988;16(3):927–953.
  • Efron B. Bootstrap methods: another look at the jackknife. In: Kotz S, Johnson NL, editors. Breakthroughs in statistics. Springer Series in Statistics (Perspectives in Statistics). New York: Springer; 1992. p. 569–593.
  • Bao L, Intille SS. Activity recognition from user-annotated acceleration data. In Second International Conference on Pervasive Computing; Linz/Vienna, Austria, April 21-23. Berlin, Heidelberg: Springer; 2004. p. 1–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.