819
Views
29
CrossRef citations to date
0
Altmetric
Review

A survey of breast cancer screening techniques: thermography and electrical impedance tomography

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 305-322 | Received 04 Jun 2019, Accepted 26 Aug 2019, Published online: 23 Sep 2019

References

  • What is Cancer? National Cancer Institute. 2015 [cited 2019 Mar 3] Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer.
  • Mambou S, Maresova P, Krejcar O. Breast cancer detection using infrared thermal imaging and a deep learning model. Sensors. 2018;18(9):2799.
  • Li X, Bond EJ, Van Veen BD, et al. An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection. IEEE Antennas Propag Mag. 2005;47(1):19–34.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018;68(6):394–424.
  • Gersten O, Wilmoth JR. The cancer transition in japan since 1951. DemRes. 2002;7:271–306.
  • Omran A. The epidemiologic transition: a theory of the epidemiology of population change. Milbank Q. 2005;83:731–757.
  • Bray F, Jemal A, Grey N, et al. Global cancer transitions according to the human development index (2008–2030): a population-based study. Lancet Oncol. 2012;13(8):790–801.
  • Maule M, Merletti F. Cancer transition and priorities for cancer control. Lancet Oncol. 2012;13(8):745–746.
  • All Cancer Globocan 2018. International Agency for Research on Cancer WHO. [cited 2019 Mar 3] Available from: http://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf.
  • Remennick L. The challenge of early breast cancer detection among immigrant and minority women in multicultural societies. Breast J. 2006;12(s1):S103–S110.
  • Women’s Health Insurance Coverage - Kaiser Family Foundation. 2018. [cited 2019 Mar 3] Available from: https://www.kff.org/womens-health-policy/fact-sheet/womens-health-insurance-coverage-fact-sheet/.
  • Kandlikar SG, Perez-Raya I, Raghupathi PA, et al. Infrared imaging technology for breast cancer detection–current status, protocols and new directions. Int J Heat Mass Transf. 2017;108:2303–2320.
  • Mandelblatt JS, Cronin KA, Bailey S, et al. Effects of mammography screening under different screening schedules: model estimates of potential benefits and harms. Ann Intern Med. 2009;151(10):738–747.
  • Gøtzsche PC, Jørgensen KJ. Screening for breast cancer with mammography. Cochrane Database Syst Rev. 2013;1(6):CD001877.
  • Løberg M, Lousdal ML, Bretthauer M, et al. Benefits and harms of mammography screening. Breast Cancer Res. 2015;17(1):63.
  • Von Eschenbach AC. Nci remains committed to current mammography guidelines. Oncologist. 2002;7(3):170–171.
  • Schousboe JT, Kerlikowske K, Loh A, et al. Personalizing mammography by breast density and other risk factors for breast cancer: analysis of health benefits and cost-effectiveness. Ann Intern Med. 2011;155(1):10–20.
  • Warner E. Clinical practice. Breast-cancer screening. N Engl J Med. 2011;365(11):1025–1032.
  • Hong S, Lee K, Ha U, et al. A 4.9 mω-sensitivity mobile electrical impedance tomography ic for early breast-cancer detection system. IEEE J Solid-State Circuits. 2015;50(1):245–257.
  • Holder DS. Electrical impedance tomography: methods, history and applications. Boca Raton: CRC Press; 2004.
  • Morimoto T, Kimura S, Konishi Y, et al. A study of the electrical bio-impedance of tumors. J Invest Surg. 1993;6(1):25–32.
  • Jossinet J. Variability of impedivity in normal and pathological breast tissue. Med Biol Eng Comput. 1996;34(5):346–350.
  • Ye G, Lim KH, George RT Jr, et al. 3d eit for breast cancer imaging: System, measurements, and reconstruction. Microw Opt Technol Lett. 2008;50(12):3261–3271.
  • Patrício M, Pereira J, Crisóstomo J, et al. Using resistin, glucose, age and bmi to predict the presence of breast cancer. BMC cancer. 2018;18(1):29.
  • Krawcz Yk B, Schaefer G, Zhu SY. Breast cancer identification based on thermal analysis and a clustering and selection classification ensemble. International Conference on Brain and Health Informatics; 2013 Oct 29–31; Maebashi, Japan. Springer; 2013.
  • Jones BF. A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Trans Med Imaging. 1998;17(6):1019–1027.
  • Gautherie M. Thermobiological assessment of benign and malignant breast diseases. Am J Obstet Gynecol. 1983;147(8):861–869.
  • McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Prevent Biomarkers. 2006;15(6):1159–1169.
  • Ursin G, Hovanessian-Larsen L, Parisky YR, et al. Greatly increased occurrence of breast cancers in areas of mammographically dense tissue. Breast Cancer Res. 2005;7(5):R605.
  • Li T, Sun L, Miller N, et al. The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Prevent Biomarkers. 2005;14(2):343–349.
  • Kontos M, Wilson R, Fentiman I. Digital infrared thermal imaging (diti) of breast lesions: sensitivity and specificity of detection of primary breast cancers. Clin Radiol. 2011;66(6):536–539.
  • Moskowitz M, Milbrath J, Gartside P, et al. Lack of efficacy of thermography as a screening tool for minimal and stage i breast cancer. N Engl J Med. 1976;295(5):249–252.
  • Threatt B, Norbeck JM, Ullman NS, et al. Thermography and breast cancer. an analysis of a blind reading. Ann NY Acad Sci. 1980;335(1):501–519.
  • Lawson R. Implications of surface temperatures in the diagnosis of breast cancer. Can Med Assoc J. 1956;75(4):309.
  • Massopust LC, Gardner WD. The infrared phlebogram in the diagnosis of breast complaints. an analysis of 1,200 cases. Surg Gynecol Obstet. 1953;97(5):619–629.
  • Lawson R. A new infrared imaging device. Can Med Assoc J. 1958;79(5):402.
  • Alt LL, Lawson RN. Diagnostic thermography method and means; 1967. US Patent 3,335,716.
  • Vogler WR, Powell RW. A clinical evaluation of thermography and heptyl adehyde in breast cancer detection. Cancer Res.. 1959;19(2):207–209.
  • Williams KL, Williams FL, Handley R. Infra-red radiation thermometry in clinical practice. Lancet. 1960;2 (7157):958–959.
  • Howell WL. Apparatus for use in differential clinical thermometry; 1967. US Patent 3,339,542.
  • Mansfield CM, Dodd GD, Wallace JD, et al. Use of heat-sensing devices in cancer therapy: a preliminary study. Radiology. 1968;91(4):673–678.
  • Swearingen AG. Thermography: Report of the radiographic and thermographic examinations of the breasts of 100 patients. Radiology. 1965;85(5):818–824.
  • Barnes RB, Engborg NE. Thermographic scanner and recorder; 1970. US Patent 3,531,642.
  • Bowling BR. Process of diagnosis by infrared thermography; 1966. US Patent 3,245,402.
  • Isard HJ, Becker W, Shilo R, et al. Breast thermography after four years and 10,000 studies. Am J Roentgenol. 1972;115(4):811–821.
  • Anbar M. Clinical thermal imaging today. IEEE Eng Med Biol Mag. 1998;17(4):25–33.
  • Ng EK. A review of thermography as promising non-invasive detection modality for breast tumor. Int J Ther Sci. 2009;48(5):849–859.
  • Ng Y, Ung L, Ng F, et al. Statistical analysis of healthy and malignant breast thermography. J Med Engineer Technol. 2001;25(6):253–263.
  • Chen Y, Ng E, Ung L, et al. Patterns and cyclic variations of thermography in female breasts. Proceedings of ICMMB-11: International Conference on Mechanics in Medicine and Biology; 2000 Apr 2–5; Maui, Hawaii, USA; 2000.
  • Arena F, Barone C, DiCicco T. Use of digital infrared imaging in enhanced breast cancer detection and monitoring of the clinical response to treatment. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), Vol. 2; 2003 Sept 17–21; Cancún, Mexico. IEEE; 2003.
  • Partridge P, Wrobel L. An inverse geometry problem for the localisation of skin tumours by thermal analysis. Engineer Anal Boundary Elements. 2007;31(10):803–811.
  • Das K, Mishra SC. Estimation of tumor characteristics in a breast tissue with known skin surface temperature. J Ther Biol. 2013;38(6):311–317.
  • Kennedy DA, Lee T, Seely D. A comparative review of thermography as a breast cancer screening technique. Integr Cancer Ther. 2009;8(1):9–16.
  • Acharya UR, Ng EYK, Tan JH, et al. Thermography based breast cancer detection using texture features and support vector machine. J Med Syst. 2012;36(3):1503–1510.
  • Marques RS. automatic segmentation of thermal mammogram images, dissertation. In: Instituto de computação universidade federal fluminense; 2012. Portuguese.
  • Da Silva TE. a methodology for the diagnosis of breast diseases from dynamic thermographs. Niterói, RJ, Brasil; 2015. Portuguese.
  • Schaefer G, Závišek M, Nakashima T. Thermography based breast cancer analysis using statistical features and fuzzy classification. Patter Recogn. 2009;42(6):1133–1137.
  • Araújo MC, Lima RC, De Souza RM. Interval symbolic feature extraction for thermography breast cancer detection. Exper Sys Appl. 2014;41(15):6728–6737.
  • Silva L, Saade D, Sequeiros G, et al. A new database for breast research with infrared image. J Med Imaging Hlth Inform. 2014;4(1):92–100.
  • Ng EK, Fok S, Peh Y, et al. Computerized detection of breast cancer with artificial intelligence and thermograms. J Med Engineer Technol. 2002;26(4):152–157.
  • Ng E, Kee E. Advanced integrated technique in breast cancer thermography. J Med Eng Technol. 2008;32(2):103–114.
  • Yassin NI, Omran S, El Houby EM, et al. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review. Comp Method Prog Biomed. 2018;156:25–45.
  • Borchartt TB, Conci A, Lima RC, et al. Breast thermography from an image processing viewpoint: a survey. Signal Proc. 2013;93(10):2785–2803.
  • Mahmoudzadeh E, Montazeri M, Zekri M, et al. Extended hidden markov model for optimized segmentation of breast thermography images. Infra Phy Technol. 2015;72:19–28.
  • Sathish D, Kamath S, Prasad K, et al. Role of normalization of breast thermogram images and automatic classification of breast cancer. Vis Comput. 2019;35:57–70.
  • Silva LF, Santos AAS, Bravo RS, et al. Hybrid analysis for indicating patients with breast cancer using temperature time series. Computer Method Prog Biomed. 2016;130:142–153.
  • Gonzalez-Hernandez JL, Recinella AN, Kandlikar SG, et al. Technology, application and potential of dynamic breast thermography for the detection of breast cancer. Int J Heat Mass Transf. 2019;131:558–573.
  • Joro R, Lääperi AL, Soimakallio S, et al. Dynamic infrared imaging in identification of breast cancer tissue with combined image processing and frequency analysis. J Med Eng Technol. 2008;32(4):325–335.
  • Lugoda P, Hughes-Riley T, Morris R, et al. A wearable textile thermograph. Sensors. 2018;18(7):2369.
  • Gogoi UR, Bhowmik MK, Bhattacharjee D, et al. Singular value based characterization and analysis of thermal patches for early breast abnormality detection. Aus Phys Eng Sci Med. 2018;41(4):861–879.
  • Zhou Y, Herman C. Optimization of skin cooling by computational modeling for early thermographic detection of breast cancer. Int J Heat Mass Transf. 2018;126:864–876.
  • Figueiredo AAA, do Nascimento JG, Malheiros FC, et al. Breast tumor localization using skin surface temperatures from a 2d anatomic model without knowledge of the thermophysical properties. Comp Method Prog Biomed. 2019;172:65–77.
  • Gogoi UR, Majumdar G, Bhowmik MK, et al. Evaluating the efficiency of infrared breast thermography for early breast cancer risk prediction in asymptomatic population. Infra Phy Technol. 2019;99:201–211.
  • Sarigoz T, Ertan T, Topuz O, et al. Role of digital infrared thermal imaging in the diagnosis of breast mass: A pilot study: Diagnosis of breast mass by thermography. Infra Phy Technol. 2018;91:214–219.
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1(2):93–122.
  • Lin Q, Yang H, Xie S, et al. Detecting early breast tumour by finite element thermal analysis. J Med Eng Technol. 2009;33(4):274–280.
  • Kubicek W, Patterson R, Witsoe D. Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system. Ann NY Acad Sci. 1970;170(2 International):724–732.
  • Corredor S, Valbuena M, Zuluaga J, et al. Design and construction a measurer of total body water, fat mass and fat free mass using lab view In: 2014 III International Congress of Engineering Mechatronics and Automation (CIIMA); 2014 Oct 22–24; Cartagena, Colombia. IEEE; 2014.
  • Brown BH. Electrical impedance tomography (eit): a review. J Med Engineer Technol. 2003;27(3):97–108.
  • Da Silva JE, De Sá JM, Jossinet J. Classification of breast tissue by electrical impedance spectroscopy. Med Biol Eng Comput. 2000;38(1):26–30.
  • Zou Y, Guo Z. A review of electrical impedance techniques for breast cancer detection. Medical Engineer Phy. 2003;25(2):79–90.
  • Fricke H, Morse S. The electric capacity of tumors of the breast. J Cancer Res. 1926;10(3):340–376.
  • Cheney M, Isaacson D, Newell JC, et al. Noser: an algorithm for solving the inverse conductivity problem. Int J Imaging Syst Technol. 1990;2(2):66–75.
  • Stasiak M, Sikora J, Filipowicz SF, et al. Principal component analysis and artificial neural network approach to electrical impedance tomography problems approximated by multi-region boundary element method. Engineer Anal Boundary Elements. 2007;31(8):713–720.
  • Zheng B, Lederman D, Sumkin JH, et al. A preliminary evaluation of multi-probe resonance-frequency electrical impedance based measurements of the breast. Acad Radiol. 2011;18(2):220–229.
  • Shetiye PC, Ghatol AA, Ghate VN. Neural network based breast cancer classifier using electrical impedance. 2012 Nirma University International Conference on Engineering (NUiCONE); 6–8 Dec 2012; Ahmedabad, Gujarat, India, IEEE; 2012.
  • Calle-Alonso F, Pérez C, Arias-Nicolás J, et al. Computer-aided diagnosis system: a bayesian hybrid classification method. Comput Methods Programs Biomed. 2013;112(1):104–113.
  • Zarafshani A, Bach T, Chatwin CR, et al. Conditioning electrical impedance mammography system. Measurement. 2018;116:38–48.
  • Stojadinovic A, Nissan A, Gallimidi Z, et al. Electrical impedance scanning for the early detection of breast cancer in young women: preliminary results of a multicenter prospective clinical trial. JCO. 2005;23(12):2703–2715.
  • Haeri Z, Shokoufi M, Jenab M, et al. Electrical impedance spectroscopy for breast cancer diagnosis: clinical study. Integr Cancer Sci Therap. 2016;3(6):1–6.
  • Pak D, Rozhkova N, Kireeva M, et al. Diagnosis of breast cancer using electrical impedance tomography. Biomed Eng. 2012;46(4):154–157.
  • Assenheimer M, Laver-Moskovitz O, Malonek D, et al. The t-scantm technology: electrical impedance as a diagnostic tool for breast cancer detection. Physiol Meas. 2001;22(1):1.
  • Halter RJ, Hartov A, Paulsen KD. A broadband high-frequency electrical impedance tomography system for breast imaging. IEEE Trans Biomed Eng. 2008;55(2 Pt 1):650–659.
  • Wu J, Wang P, Tang Y, et al. A new method to rapid identify benign and malignant breast lumps through bioelectrical impedance spectroscopy. Med Phys. 2019;46(5):2522.
  • Carlak HF, Gencer NG, Besikci C. Theoretical assessment of electro-thermal imaging: A new technique for medical diagnosis. Infra Phy Technol. 2016;76:227–234.
  • Menegaz GL, Guimarães G. Development of a new technique for breast tumor detection based on thermal impedance and a damage metric. Infra Phy Technol. 2019;97:401–410.
  • Singh G, Anand S, Lall B, et al. Low-cost multifrequency electrical impedance-based system (mfeibs) for clinical imaging: design and performance evaluation. J Med Engineer Technol. 2018;42(4):274–289.
  • Cheney M, Isaacson D, Newell JC. Electrical impedance tomography. SIAM Rev. 1999;41(1):85–101.
  • Moore LE, Pfeiffer RM, Poscablo C, et al. Genomic dna hypomethylation as a biomarker for bladder cancer susceptibility in the spanish bladder cancer study: a case–control study. Lancet Oncol. 2008;9(4):359–366.
  • Thakur BK, Zhang H, Becker A, et al. Double-stranded dna in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24(6):766.
  • Lofton-Day C, Model F, DeVos T, et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2008;54(2):414–423.
  • Kobayashi Y, Absher DM, Gulzar ZG, et al. Dna methylation profiling reveals novel biomarkers and important roles for dna methyltransferases in prostate cancer. Genome Res. 2011;21(7):1017–1027.
  • Brennan K, Garcia-Closas M, Orr N, et al. Intragenic atm methylation in peripheral blood dna as a biomarker of breast cancer risk. Cancer Res. 2012;72(9):2304–2313.
  • Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in python. J Mac Learn Res. 2011;12:2825–2830.
  • Abadi M, Barham P, Chen J, et al. Tensorflow: A system for large-scale machine learning. 12th Symposium on Operating Systems Design and Implementation; 2016 Nov 2–4; Savannah, GA, USA; 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.