84
Views
4
CrossRef citations to date
0
Altmetric
Innovation

Study of hot stress dynamic IR thermography for detecting surface cancerous tissue

, &
Pages 284-298 | Received 08 Nov 2019, Accepted 17 May 2020, Published online: 16 Jun 2020

References

  • Cancer Facts and Figures. 2018. [cited 2019 June 30]. Available from: https://www.cancer.org/research/cancer-facts-statistics.html.
  • Gonzalez-Hernandez JL, Recinella AN, Kandlikar SG, et al. Technology, application and potential of dynamic breast thermography for the detection of breast cancer. Int J Heat Mass Transf. 2019;131:558–573.
  • Das K, Singh R, Mishra SC. Numerical analysis for determination of the presence of a tumor and estimation of its size and location in a tissue. J Therm Biol. 2013;38(1):32–40.
  • DeVita J. V., Hellman, S. and Rosenberg, S.A. Cancer: principles and practice of oncology. Philadelphia (PA): Lippincott Williams & Wilkins; 2001.
  • Matloff, E. Cancer principles and practice of oncology: handbook of clinical cancer genetics. Philadelphia (PA): Lippincott Williams & Wilkins; 2013.
  • Marcal LP, Patnana M, Bhosale P, et al. Intraoperative abdominal ultrasound in oncologic imaging. World J Radiol. 2013;5(3):51–60.
  • Strömblad S. Measuring the optical properties of human muscle tissue using time-of-flight spectroscopy in the near infrared Master’s Thesis. Lund University, 2015.
  • Namikawa T, Sato T, Hanazaki K. Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green. Surg Today. 2015;45(12):1467–1474.
  • Byrns GE, Palatianos KC, Shands LA, Fennelley KP, et al. Chemical hazards in radiology. Appl Occup Environ Hyg. 2000;15(2):203–208.
  • Lee YS, Lee HK, Cho JH, Kim HG. Analysis of radiation risk to patients from intra-operative use of the mobile X-ray system (C-arm). J Res Med Sci. 2015;20(1):p7.
  • Ohashi Y, Uchida I. Applying dynamic thermography in the diagnosis of breast cancer. IEEE Eng Med Biol Mag. 2000;19(3):42–51.
  • Parisky YR, Sardi A, Hamm R, et al. Efficacy of computerized infrared imaging analysis to evaluate mammographically suspicious lesions. AJR Am J Roentgenol. 2003;180(1):263–269.
  • Arora N, Martins D, Ruggerio D, et al. Effectiveness of a non-invasive digital infrared thermal imaging system in the detection of breast cancer. Am J Surg. 2008;196(4):523–526.
  • Wishart GC, Campisi M, Boswell M, et al. The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy. Eur J Surgical Oncol. 2010;36(6):535–540.
  • Barnes RB. Thermography. Ann N Y Acad Sci. 1964;121(1):34–48.
  • Kandlikar SG, Perez-Raya I, Raghupathi PA, et al. Infrared imaging technology for breast cancer detection–Current status, protocols and new directions. Int J Heat Mass Transf. 2017;108:2303–2320.
  • Poller DN, Barth A, Slamon DJ, et al. Prognostic classification of breast ductal carcinoma-in-situ. The Lancet. 1995;345(8958):1154–1157.
  • Oh G, Lee KH, Chung E. Active thermodynamic contrast imaging for label-free tumor detection in a murine xenograft tumor model. Biomed Opt Express. 2017;8(11):5013–5026.
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1(2):93–122.
  • Amri A, Pulko SH, Wilkinson AJ. Potentialities of steady-state and transient thermography in breast tumour depth detection: a numerical study. Comput Methods Programs Biomed. 2016;123:68–80.
  • Chanmugam A, Hatwar R, Herman C. Thermal analysis of cancerous breast model. In ASME 2012 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers; 2012.
  • Hatwar R, Herman C. Inverse method for quantitative characterisation of breast tumours from surface temperature data. Int J Hyperthermia. 2017;33(7):741–757.
  • Ng EK, Sudharsan NM. Effect of blood flow, tumour and cold stress in a female breast: a novel time-accurate computer simulation. Proc Inst Mech Eng H. 2001;215(4):393–404.
  • Jiang L, Zhan W, Loew MH. Modeling static and dynamic thermography of the human breast under elastic deformation. Phys Med Biol. 2011;56(1):187–202.
  • Xu F, Lu T. Introduction to skin biothermomechanics and thermal pain. Berlin: Springer; 2011.
  • Xu F, Seffen KA, Lu TJ. Non-Fourier analysis of biothermomechanics. Int J Heat Mass Transfer. 2008;51(9-10):2237–2259.
  • Ströher GR, Ströher GL. Numerical thermal analysis of skin tissue using parabolic and hyperbolic approaches. Int Commun Heat Mass Transfer. 2014;57:193–199.
  • Lloyd JR, Moran WR. Natural convection adjacent to horizontal surface of various planforms. ASME J. Heat Transfer. 1974;96(4):443–447.
  • Patankar S. Numerical heat transfer and fluid flow. US: Hemisphere Publishing Corporation; 2018.
  • Zhang H. Lattice Boltzmann method for solving the bioheat equation. Phys Med Biol. 2008;53(3):15–23.
  • Balaji C. Essentials of radiation heat transfer. New Delhi (India): Ane Books Pvt. Ltd.; 2014.
  • Bashkatov AN, Genina EA, Tuchin VV. Optical properties of skin, subcutaneous, and muscle tissues: A review. J Innov Opt Health Sci. 2011;04(01):9–38.
  • Verma AK, Rath P, Mahapatra SK. Assessment of thermal damage during skin tumor treatment using thermal wave model: a realistic approach. ASME J Heat Transfer. 2017;139(5):051102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.