2,296
Views
55
CrossRef citations to date
0
Altmetric
Reviews

A review of haptic feedback in tele-operated robotic surgery

ORCID Icon &
Pages 247-254 | Received 13 Apr 2020, Accepted 17 May 2020, Published online: 23 Jun 2020

References

  • Sketch SM, Deo DR, Menon JP, et al. Design and experimental evaluation of a skin-stretch haptic device for improved control of brain-computer interfaces. Proceedings of the International conference on Robotics and Automation (ed IEEE); 2015 May 26–30; Seattle, USA; 2015. p. 272–277.
  • Culbertson H, Schorr SB, Okamura AM. The present and future of artificial touch sensation. Annu Rev Control Robot Auton Syst. 2018;1(1):385–409.
  • McKinley S, Garg A, Sen S, et al. A single-use haptic palpation probe for locating subcutaneous blood vessels in robot-assisted minimally invasive surgery. Proceedings of the IEEE International conference on Robotics and Automation (ed IEEE); 2015 Aug 24–28; Gothenburg, Sweden; 2015. p. 1151–1158.
  • Girão PS, Ramos PMP, Postolache O, et al. Tactile sensors for robotic applications. Meas J Int Meas Confed. 2013;46(3):1257–1271.
  • Aggravi M, De Momi E, DiMeco F, et al. Hand-tool-tissue interaction forces in neurosurgery for haptic rendering. Med Biol Eng Comput. 2016;54(8):1229–1241.
  • Tiwana MI, Redmond SJ, Lovell NH. A review of tactile sensing technologies with applications in biomedical engineering. Sensors Actuators, A Phys. 2012;179:17–31.
  • Karponis D, Koya Y, Miyazaki R, et al. Evaluation of a pneumatic surgical robot with dynamic force feedback. J Robotic Surg. 2019;13(3):413–421.
  • Herzig N, Maiolino P, Iida F, et al. A variable stiffness robotic probe for soft tissue palpation. IEEE Robot Autom Lett. 2018;3(2):1168–1175.
  • Okamura AM. Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol. 2009. 19(1):102–107.
  • Koehn JK, Kuchenbecker KJ. Surgeons and non-surgeons prefer haptic feedback of instrument vibrations during robotic surgery. Surg Endosc. 2015;29(10):2970–2983.
  • Liang Y, Sun L, Du Z, et al. Mechanism design and optimization of a haptic master manipulator for laparoscopic surgical robots. IEEE Access. 2019;7:147808–147824.
  • Reiley CE, Akinbiyi T, Burschka D, et al. Effects of visual force feedback on robot-assisted surgical task performance. J Thorac Cardiovasc Surg. 2008;135(1):196–202.
  • Brown J, Fernandez J, Cohen S KK. A wrist-squeezing force-feedback system for robotic surgery training. Proceedings of the IEEE International conference on Robotics and Automation (ed IEEE); 2017 Jun 6-9; Furstenfeldbruck, Germany; 2017. p. 107–112.
  • Seminara L, Gastaldo P, Watt SJ, et al. Active haptic perception in robots: A Review, Editor. Front Neurorobot 2019;13:1–20.
  • Abiri A, Pensa J, Tao A, et al. Multi-modal haptic feedback for grip force reduction in robotic surgery. Sci Rep. 2019;9(1):1–10.
  • Che Y, Haro G OA. Two is not always better than one: effects of teleoperation and haptic coupling. Proceedings of the International conference on Robotics and Automation (ed IEEE); 2016 Jun 26–29; Utown, Singapore; 2016. p. 1290–1295.
  • Mahvash M, Gwilliam J, Agarwal R, et al. Force-feedback surgical teleoperator: Controller design and palpation experiments. Symposium on Haptics Interfaces for Virtual Environment and Teleoperator Systems (ed IEEE); 2008 Mar 13–14; Reno, USA; 2008. p. 465–471.
  • Pacchierotti C, Tirmizi A, Prattichizzo D. 2014-2 Improving transparency in teleoperation by means of cutaneous tactile force feedback. ACM Trans Appl Percept. 2014;11(1):1–16.
  • Quek ZF, Provancher WR, Okamura AM. Evaluation of skin deformation tactile feedback for teleoperated surgical tasks. IEEE Trans Haptics. 2019;12(2):102–113.
  • McMahan W, Gewirtz J, Standish D, et al. Tool contact acceleration feedback for telerobotic surgery. IEEE Trans Haptics. 2011;4(3):210–220.
  • Enayati N, De Momi E, Ferrigno G. Haptics in robot-assisted surgery: challenges and benefits. IEEE Rev Biomed Eng. 2016;9:49–65.
  • Pacchierotti C, Meli L, Chinello F, et al. Cutaneous haptic feedback to ensure the stability of robotic teleoperation systems. Int J Rob Res. 2015;34(14):1773–1787.
  • Saracino A, Deguet A, Staderini F, et al. Haptic feedback in the da vinci research kit (dvrk): a user study based on grasping, palpation, and incision tasks. Int J Med Robot Comput Assist Surg. 2019;15(4):1–13.
  • Solodova RF, Galatenko VV, Nakashidze ER, et al. Instrumental tactile diagnostics in robot-assisted surgery. Med Devices (Auckl)). 2016;9:377–382.
  • Yamamoto T, Abolhassani N, Jung S, et al. Augmented reality and haptic interfaces for robot-assisted surgery. Int J Med Robot. 2012;8(1):45–56.
  • Payne JC, Marcus HJ, Yang GZ. Hand-held microsurgical forceps with force-feedback for micromanipulation. Ann Biomed Eng. 2014;43(9):2185–2195.
  • Lim SC, Lee HK, Park J. Role of combined tactile and kinesthetic feedback in minimally invasive surgery. Int J Med Robot. 2015;11(3):360–374.
  • Gaudeni C, Meli L, Prattichizzo D. A novel pneumatic force sensor for robot-assisted surgery. In: Prattichizzo D, Shinoda H, Tan HZ, et al., Editors. Haptics: Science, Technology, and Applications. Switzerland: Springer; 2018; p. 587–599.
  • Watanabe T, Iwai T, Fujihira Y, et al. Force sensor attachable to thin fiberscopes/endoscopes utilizing high elasticity fabric. Sensors (Basel)). 2014;14(3):5207–5220.
  • Kim U, Lee DH, Yoon WJ, et al. Force sensor integrated surgical forceps for minimally invasive robotic surgery. IEEE Trans Robot. 2015;31(5):1214–1224.
  • Pacchierotti C, Abayazid M, Misra S, et al. 2014 Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback. IEEE Trans Haptics. 2014;7(4):551–556.
  • Mohand-Ousaid A, Millet G, Régnier S, et al. Haptic interface transparency achieved through viscous coupling. Int J Rob Res. 2012;31(3):319–329.
  • Pacchierotti C, Prattichizzo D, Kuchenbecker KJ. 2016-2 Cutaneous feedback of fingertip deformation and vibration for palpation in robotic surgery. IEEE Trans Biomed Eng. 2016;63(2):278–287.
  • Casalino A, Messeri C, Pozzi M, Zanchettin AM, et al. Operator awareness in human-robot collaboration through wearable vibrotactile feedback. IEEE Robot Autom Lett. 2018;3(4):4289–4296.
  • Kanjanapas S, Nunez CM, Williams SR, et al. Design and analysis of pneumatic 2-DoF soft haptic devices for shear display. IEEE Robot Autom Lett. 2019;4(2):1365–1371.
  • Bark K, McMahan W, Remington A, et al. In vivo validation of a system for haptic feedback of tool vibrations in robotic surgery. Surg Endosc. 2013;27(2):656–664.
  • Li Y, Yin Y, Zhang S. Adaptive control of delayed teleoperation systems with parameter convergence. Math Probl Eng. 2018;2018:1–7.
  • Ryu JH, Kwon DS, Hannaford B. Stability guaranteed control: time domain passivity approach. IEEE Trans Control Syst Technol. 2004;12(6):860–868.
  • Niemeyer G, Slotine J. Telemanipulation with time delays. Int J Rob Res. 2004;23(9):873–890.
  • Kim JP, Ryu J. Robustly stable haptic interaction control using an energy-bounding algorithm. Int J Rob Res. 2010;29(6):666–679.
  • Baser O, Konukseven EI, Gurocak H. Transparency improvement in haptic devices with a torque compensator using motor current. In: Isokoski P, Springare J, Editors. Haptics - Perception, Devices, Mobility and communication. Tempere, Finland: Springer, 2012, p. 37–46.
  • Kitagawa M, Dokko D, Okamura AM, et al. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems. J Thorac Cardiovasc Surg. 2005;129(1):151–158.
  • Rosati G, Rodà A, Avanzini F, et al. On the role of auditory feedback in robot-assisted movement training after stroke: review of the literature. Comput Intell Neurosci. 2013;2013:586138–586115.
  • Prattichizzo D, Pacchierotti C, Rosati G. Cutaneous force feedback as a sensory subtraction technique in haptics. IEEE Trans Haptics. 2012;5(4):289–300.
  • Chung WK, Ahn S, Lee JS, Lee K, et al. POSTECH navigation frame: toward a practical solution for indoor slam and navigation. In: Kaneko M, Nakamura Y, Editors. Robotic Research. Germany: Springer; 2010; p. 225–236.
  • Schoonmaker RE, Cao C. Vibrotactile force feedback system for minimally invasive surgical procedures. Proceedings of the 2006 IEEE International Conference on Systems, Man and Cybernetics; 2006.
  • Meli L, Pacchierotti C, Prattichizzo D. Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation. Int J Med Robot Comput Assist Surg. 2017;13(4): e1809.
  • Payne CJ, Marcus HJ, Yang GZ. A smart haptic hand-held device for neurosurgical microdissection. Ann Biomed Eng. 2015;43(9):2185–2195.
  • Feldstein J, Schwander B, Roberts M, et al. Cost of ownership assessment for a da Vinci robot based on US real-world data. Int J Med Robot 2019;15(5):e2023.
  • Is-da-vinci-robotic-surgery-revolution-or-ripoff-021215. Available from: www.healthline.com.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.