98
Views
3
CrossRef citations to date
0
Altmetric
Innovation

Negative differential resistance, rectification, tunable peak-current position and switching effects in an alanine-based molecular device

ORCID Icon, &
Pages 505-510 | Received 30 Jun 2019, Accepted 13 May 2020, Published online: 29 Jun 2021

References

  • Chen J, Reed M, Rawlett A, et al. Large on–off ratios and negative differential resistance in a molecular electronic device. Science. 1999;286(5444):1550–1552.
  • Di Ventra M, Pantelides S, Lang N. First-principles calculation of transport properties of a molecular device. Phys Rev Lett. 2000;84:979.
  • Thiele S, Vincent R, Holzmann M, et al. Electrical readout of individual nuclear spin trajectories in a single-molecule magnet spin transistor. Phys Rev Lett. 2013;111(3):037203
  • Ray S. Humidity sensor using a single molecular transistor. J Appl Phys. 2015;118(4):044307.
  • Nagarajan V, Chandiramouli R. Switching properties of quinquephenylene molecular device – a first-principles approach. Chem Phys Lett. 2017;675:131–136.
  • Sebera J, Kolivoska V, Valášek M, et al. Tuning charge transport properties of asymmetric molecular junctions. J Phys Chem C. 2017;121(23):12885–12894.
  • Rashkeev S, Di Ventra M, Pantelides S. Transport in molecular transistors: symmetry effects and nonlinearities. Phys Rev B. 2002;66(3):033301.
  • Wheeler W, Dahnovsky Y. Molecular transistors based on BDT-type molecular bridges. J Chem Phys. 2008;129(15):154112.
  • Wan H, Zhou B, Chen X, et al. Switching, dual spin-filtering effects, and negative differential resistance in a carbon-based molecular device. J Phys Chem C. 2012;116(3):2570–2574.
  • Fang X, Ding J, Yuan N, et al. Graphene quantum dot incorporated perovskite films: passivating grain boundaries and facilitating electron extraction. Phys Chem Chem Phys. 2017;19(8):6057–6063.
  • Behrooz M, Monshipouri M, Abdi Y. Modelling the effects of hydrogen passivation and strain on the field emission from armchair-graphene nanoribbon using a modified non-equilibrium Green’s function method. Mol Simul. 2017;43(12):908–906.
  • Senapati L, Pati R, Erwin S. Controlling spin-polarized electron transport through a molecule: the role of molecular conformation. Phys Rev B. 2007;76(2):024438.
  • Pati R, Senapati L, Ajayan PM, et al. First-principles calculations of spin-polarized electron transport in a molecular wire: molecular spin valve. Phys Rev B. 2003;68(10):100407.
  • Balseiro C, Cornaglia P, Grempel D. Electron–phonon correlation effects in molecular transistors. Phys Rev B. 2006;74(23):235409.
  • Chen F, Tao N. Electron transport in single molecules: from benzene to graphene. Acc Chem Res. 2009;42(3):429–438.
  • Choi J, Wang MC, Cha RYS, et al. Graphene bioelectronics. Biomed Eng Lett. 2013;3(4):201–208.
  • Chen Y-S, Hong M-Y, Huang GS. A protein transistor made of an antibody molecule and two gold nanoparticles. Nat Nanotechnol. 2012;7(3):197–203.
  • Xin N, Wang J, Jia C, et al. Stereoelectronic effect-induced conductance switching in aromatic chain single-molecule junctions. Nano Lett. 2017;17(2):856–861.
  • Gehring P, Sowa JK, Cremers J, et al. Distinguishing lead and molecule states in graphene-based single-electron transistors. ACS Nano. 2017;11(6):5325–5331.
  • Flensberg K. Tunneling broadening of vibrational sidebands in molecular transistors. Phys Rev B. 2003;68(20):205323.
  • Braig S, Flensberg K. Vibrational sidebands and dissipative tunneling in molecular transistors. Phys Rev B. 2003;68(20):205324.
  • Karunakaran C, Bhargava K, Benjamin R. Biosensors and bioelectronics. 1st edn. Elsevier; 2015.
  • Stokbro K, Taylor J, Brandbyge M, et al. TranSIESTA: a spice for molecular electronics. Ann NY Acad Sci. 2003;1006:212–226.
  • Ceperley DM, Alder B. Ground state of the electron gas by a stochastic method. Phys Rev Lett. 1980;45(7):566–569.
  • Perdew JP, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B. 1981;23(10):5048–5079.
  • Datta S. Electronic transport in mesoscopic systems. Cambridge University Press; 1997.
  • Pourfath M. The non-equilibrium Green’s function method for nanoscale device simulation. Computational Microelectronics. Berlin: Springer; 2014.
  • Soler JM, Artacho E, Gale JD, et al. The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter. 2002;14(11):2745–2779.
  • Pan J, Zhang Z, Ding K, et al. Current rectification induced by asymmetrical electrode materials in a molecular device. Appl Phys Lett. 2011;98(9):092102.
  • Deng X, Zhou J, Zhang Z, et al. Electrode conformation-induced negative differential resistance and rectifying performance in a molecular device. Appl Phys Lett. 2009;95(16):163109.
  • Xue Y, Datta S, Hong S, et al. Negative differential resistance in the scanning-tunneling spectroscopy of organic molecules. Phys Rev B. 1999;59(12):R7852–R7855.
  • Farajian A, Belosludov R, Mizuseki H, et al. Gate-induced switching and negative differential resistance in a single-molecule transistor: emergence of fixed and shifting states with molecular length. J Chem Phys. 2007;127(2):024901.
  • Kang N, Erbe A, Scheer E. Observation of negative differential resistance in DNA molecular junctions. Appl Phys Lett. 2010;96(2):023701.
  • Kiehl RA, Le JD, Candra P, et al. Charge storage model for hysteretic negative-differential resistance in metal-molecule-metal junctions. Appl Phys Lett. 2006;88(17):172102.
  • Kratochvilova I, Kocirik M, Zambova A, et al. Room temperature negative differential resistance in molecular nanowires. J Mater Chem. 2002;12(10):2927–2930.
  • Pati R, McClain M, Bandyopadhyay A. Origin of negative differential resistance in a strongly coupled single molecule-metal junction device. Phys Rev Lett. 2008;100(24):246801.
  • Zeng C, Wang H, Wang B, et al. Negative differential-resistance device involving two C60 molecules. Appl Phys Lett. 2000;77(22):3595–3597.
  • Chen L, Hu Z, Zhao A, et al. Mechanism for negative differential resistance in molecular electronic devices: local orbital symmetry matching. Phys Rev Lett. 2007;99(14):146803.
  • Zhang C, Du M-H, Cheng H-P, et al. Coherent electron transport through an azobenzene molecule: a light-driven molecular switch. Phys Rev Lett. 2004;92(15):158301.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.