129
Views
9
CrossRef citations to date
0
Altmetric
Review

Analysis on diagnosing diabetic retinopathy by segmenting blood vessels, optic disc and retinal abnormalities

, &
Pages 299-316 | Received 27 Jan 2020, Accepted 28 May 2020, Published online: 30 Jul 2020

References

  • Singh N, Singh P. Stacking-based multi-objective evolutionary ensemble framework for prediction of diabetes mellitus. Biocybern Biomed Eng. 2020;40(1):1–22.
  • Esteban S, Tablado M, Peper FE, et al. Development and validation of various phenotyping algorithms for Diabetes Mellitus using data from electronic health records. Comput Methods Programs Biomed. 2017;152:53–70.
  • Wu J, Diao YB, Li ML, et al. A semi-supervised learning based method: Laplacian support vector machine used in diabetes disease diagnosis. Interdiscip Sci. 2009;1(2):151–155.
  • Solomon SD, Chew E, Duh EJ, et al. Diabetic retinopathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(3):412–418.
  • Yau JWY, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–564.
  • Murphree DH, Arabmakki E, Ngufor C, et al. Stacked classifiers for individualized prediction of glycemic control following initiation of metformin therapy in type 2 diabetes. Comput Biol Med. 2018;103:109–115.
  • Zheng T, Xie W, Xu L, et al. A machine learning-based framework to identify type 2 diabetes through electronic health records. Int J Med Inform. 2017;97:120–127.
  • Aquino A, Gegundez-Arias ME, Marin D. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans Med Imaging. 2010;29(11):1860–1869.
  • Salazar-Gonzalez A, Kaba D, Li Y, et al. Segmentation of the blood vessels and optic disk in retinal images. IEEE J Biomed Health Inform. 2014;18(6):1874–1886.
  • Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–136.
  • Goatman KA, Fleming AD, Philip S, et al. Detection of new vessels on the optic disc using retinal photographs. IEEE Trans Med Imaging. 2011;30(4):972–979.
  • Zeng X, Chen H, Luo Y, et al. Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network. IEEE Access. 2019;7:30744–30753.
  • Ngo L, Han J. Multi-level deep neural network for efficient segmentation of blood vessels in fundus images. Electron Lett. 2017;53(16):1096–1098.
  • Zhou L, Zhao Y, Yang J, et al. Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. IET Image Process. 2018;12(4):563–571.
  • He K, Zhang X, Ren S, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV); 2015 Feb 6; Santiago. p. 1026–1034.
  • Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529(7587):484–489.
  • Sun Y, Liang D, Wang X, et al. DeepID3: face recognition with very deep neural networks. arXiv. 2015.
  • Sun Y. The neural network of one-dimensional convolution-an example of the diagnosis of diabetic retinopathy. IEEE Access. 2019;7:69657–69666.
  • Leeza M, Farooq H. Detection of severity level of diabetic retinopathy using Bag of features model. IET Comput Vis. 2019;13(5):523–530.
  • Wan S, Liang Y, Zhang Y. Deep convolutional neural networks for diabetic retinopathy detection by image classification. Comput Electr Eng. 2018;72:274–282.
  • Dashtbozorg B, Zhang J, Huang F, et al. Retinal microaneurysms detection using local convergence index features. IEEE Trans Image Process. 2018;27(7):3300–3315.
  • Gao Z, Li J, Guo J, et al. Diagnosis of diabetic retinopathy using deep neural networks. IEEE Access. 2019;7:3360–3370.
  • Kumar D, Taylor GW, Wong A. Discovery radiomics With CLEAR-DR: interpretable computer aided diagnosis of diabetic retinopathy. IEEE Access. 2019;7:25891–25896.
  • Shaik F, Sharma AK, Ahmed SM. Hybrid model for analysis of abnormalities in diabetic cardiomyopathy and diabetic retinopathy related images. SpringerPlus. 2016;5(1):507.
  • Costa P, Galdran A, Smailagic A, et al. A weakly-supervised framework for interpretable diabetic retinopathy detection on retinal images. IEEE Access. 2018;6:18747–18758.
  • Sonali S, KumarSingh A, Ghrera SP, et al. An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Opt Laser Technol. 2019;110:87–98.
  • Madhumitha S, Manikandan M. Quantitative analysis of marker-based watershed image segmentation. Curr Sci. 2018;114(5):1007–1013.
  • Dey S, Bhattacharyya S, Maulik U. Quantum inspired genetic algorithm and particle swarm optimization using chaotic map model based interference for gray level image thresholding. Swarm Evol Comput. 2014;15:38–57.
  • Abdullah Yahya A, Tan J, Hu M. A novel model of image segmentation based on watershed algorithm. Adv Multimed. 2013;2013:1–8.
  • Khaleefah SH, Mostafa SA, Mustapha A, et al. The ideal effect of Gabor filters and Uniform Local Binary Pattern combinations on deformed scanned paper images. J King Saud Univ - Comput Inf Sci. 2019. DOI:10.1016/j.jksuci.2019.07.012
  • Liao S, Law MWK, Chung ACS. Dominant local binary patterns for texture classification. IEEE Trans Image Process. 2009;18(5):1107–1118.
  • Gupta R, Undrill PE. The use of texture analysis to delineate suspicious masses in mammography. Phys Med Biol. 1995;40(5):835–855.
  • Mookiah MRK, Acharya UR, Martis RJ, et al. Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach. Knowl Based Sys. 2013;39:9–22.
  • Jafari M, Bayati Chaleshtari MH. Using dragonfly algorithm for optimization of orthotropic infinite plates with a quasi-triangular cut-out. Eur J Mech A: Solids. 2017;66:1–14.
  • Pedersen MEH, Chipperfield AJ. Simplifying particle swarm optimization. Appl Soft Comput. 2010;10(2):618–628.
  • Binu D, Kariyappa BS. RideNN: a new rider optimization algorithm-based neural network for fault diagnosis in analog circuits. IEEE Trans Instrum Meas. 2019;68(1):2–26.
  • Marsaline Beno M, Valarmathi IR, Swamy SM, et al. Threshold prediction for segmenting tumour from brain MRI scans. Int J Imaging Syst Technol. 2014;24(2):129–137.
  • Liu Y, Zhou H, Tsung F, et al. Real-time quality monitoring and diagnosis for manufacturing process profiles based on deep belief networks. Comput Ind Eng. 2019;136:494–503.
  • Fernández-Navarro F, Carbonero-Ruz M, Becerra Alonso D, et al. Global sensitivity estimates for neural network classifiers. IEEE Trans Neural Netw Learn Syst. 2017;28(11):2592–2604.
  • George A, Rajakumar BR. On hybridizing fuzzy min max neural network and firefly algorithm for automated heart disease diagnosis. Proceedings of the Fourth International Conference on Computing, Communications and Networking Technologies; July 2013, Tiruchengode, India.
  • Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw. 2016;95:51–67.
  • Jadhav AS, Patil PB. Optimal feature selection-based diabetic retinopathy detection using improved rider optimization algorithm enabled with deep learning. Evol Intel. 2020. DOI:10.1007/s12065-020-00400-0
  • Jadhav AS, Patil PB. Computer aided diabetic retinopathy diagnostic model using optimal thresholding merged with neural network. International Journal of Intelligent Computing and Cybernetics. 2020. DOI:10.1108/IJICC-11-2019-0119

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.