592
Views
15
CrossRef citations to date
0
Altmetric
Innovations

Brain-machine and muscle-machine bio-sensing methods for gesture intent acquisition in upper-limb prosthesis control: a review

Pages 115-128 | Received 21 Jun 2020, Accepted 15 Nov 2020, Published online: 21 Jan 2021

References

  • Cordella F, Ciancio AL, Sacchetti R, et al. Literature review on needs of upper limb prosthesis users. Front Neurosci. 2016;10:1–14.
  • Fougner A, Stavdahl O, Kyberd PJ, et al. Control of upper limb prostheses: terminology and proportional myoelectric control-a review. IEEE Trans Neural Syst Rehabil Eng. 2012;20(5):663–677.
  • Gaudet G, Raison M, Achiche S. Classification of upper limb phantom movements in transhumeral amputees using electromyographic and kinematic features. Eng Appl Artif Intell. 2018;68:153–164.
  • Fang Y, Hettiarachchi N, Zhou D, et al. Multi-modal sensing techniques for interfacing hand prostheses: a review. IEEE Sensors J. 2015;15(11):6065–6076.
  • Lobo-Prat J, Kooren PN, Stienen AH, et al. Non-invasive control interfaces for intention detection in active movement-assistive devices. J Neuroeng Rehabil. 2014;11:168.
  • University of California Irvine. Myoelectric prosthesis [Internet]. University of California Irvine; 2020 [cited 2020 May 1]. Available from: http://bme240.eng.uci.edu/students/10s/slam5/types.html.
  • Guo W, Yao P, Sheng X, et al. An enhanced human-computer interface based on simultaneous sEMG and NIRS for prostheses control. 2014 IEEE International Conference on Information and Automation (ICIA) [Internet], Hailar, Hulun Buir, China: IEEE; 2014 [cited 2020 Oct 7]. p. 204–207. Available from: http://ieeexplore.ieee.org/document/6932653/.
  • Farrell TR, Weir R. A comparison of the effects of electrode implantation and targeting on pattern classification accuracy for prosthesis control. IEEE Trans Biomed Eng. 2008;55(9):2198–2211.
  • Smith LH, Hargrove LJ. Comparison of surface and intramuscular EMG pattern recognition for simultaneous wrist/hand motion classification. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) [Internet]. Osaka: IEEE; 2013 [cited 2020 Oct 7]. p. 4223–4226. Available from: http://ieeexplore.ieee.org/document/6610477/.
  • Kamavuako EN, Farina D, Jensen W. Use of sample entropy extracted from intramuscular EMG signals for the estimation of force. In: Dremstrup K, Rees S, Jensen MØ, editors. 15th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC 2011) [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 125–128.
  • Kamavuako EN, Scheme EJ, Englehart KB. Wrist torque estimation during simultaneous and continuously changing movements: surface vs. untargeted intramuscular EMG. J Neurophysiol. 2013;109(11):2658–2665.
  • Farina D, Cescon C, Merletti R. Influence of anatomical, physical, and detection-system parameters on surface EMG. Biol Cybern. 2002;86(6):445–456.
  • Englehart K, Hudgins B, Chan ADC. Continuous multifunction myoelectric control using pattern recognition. Vol. 15. In: Kyberd P, Chappell P, Gow D, editors. TAD; 2003. p. 95–103.
  • Amaral P, Sales F, Cunha JP, et al. Multimodal application for visualization and manipulation of electrocorticography data. Porto Salvo: Portugal; 2007.
  • Chestek CA, Gilja V, Blabe CH, et al. Hand posture classification using electrocorticography signals in the gamma band over human sensorimotor brain areas. J Neural Eng. 2013;10(2):026002.
  • Tonet O, Marinelli M, Citi L, et al. Defining brain-machine interface applications by matching interface performance with device requirements. J Neurosci Methods. 2008;167(1):91–104.
  • Yanagisawa T, Hirata M, Saitoh Y, et al. Real-time control of a prosthetic hand using human electrocorticography signals: technical note. J Neurosurg. 2011;114(6):1715–1722.
  • Yanagisawa T, Hirata M, Saitoh Y, et al. Electrocorticographic control of a prosthetic arm in paralyzed patients. Ann Neurol. 2012;71(3):353–361.
  • Micera S, Rossini PM, Rigosa J, et al. Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces. J Neuroeng Rehabil. 2011;8:53.
  • Micera S, Rigosa J, Carpaneto J, et al. On the control of a robot hand by extracting neural signals from the PNS: Preliminary results from a human implantation. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society [Internet]. Minneapolis, MN: IEEE; 2009 [cited 2020. Oct 7]. p. 4586–4589. Available from: http://ieeexplore.ieee.org/document/5332764/.
  • Rossini PM, Micera S, Benvenuto A, et al. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol. 2010;121(5):777–783.
  • Dhillon GS, Horch KW. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng. 2005;13(4):468–472.
  • Carpaneto J, Cutrone A, Bossi S, et al. Activities on PNS neural interfaces for the control of hand prostheses. 2011. Annual International Conference of the IEEE Engineering in Medicine and Biology Society [Internet]. Boston, MA: IEEE; 2011 [cited 2020 Oct 7]. p. 4637–4640. Available from: http://ieeexplore.ieee.org/document/6091148/.
  • Branner A, Stein RB, Normann RA. Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J Neurophysiol. 2001;85(4):1585–1594.
  • Ledbetter NM, Ethier C, Oby ER, et al. Intrafascicular stimulation of monkey arm nerves evokes coordinated grasp and sensory responses. J Neurophysiol. 2013;109(2):580–590.
  • Normann RA, McDonnall D, Clark GA, et al. Physiological activation of the hind limb muscles of the anesthetized cat using the Utah slanted electrode array. Proceedings 2005 IEEE International Joint Conference on Neural Networks, 2005 [Internet]. Montreal, QC, Canada: IEEE; 2005 [cited 2020 Oct 7]. p. 3103–3108. Available from: http://ieeexplore.ieee.org/document/1556422/.
  • George JA, Brinton MR, Duncan CC, et al. Improved training paradigms and motor-decode algorithms: results from intact individuals and a recent transradial amputee with prior complex regional pain syndrome. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) [Internet]. Honolulu, HI: IEEE; 2018 [cited 2020 Oct 7]. p. 3782–3787. Available from: https://ieeexplore.ieee.org/document/8513342/.
  • George JA, Davis TS, Brinton MR, et al. Intuitive neuromyoelectric control of a dexterous bionic arm using a modified Kalman filter. J Neurosci Methods. 2020;330:108462.
  • George JA, Kluger DT, Davis TS, et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci Robot. 2019;4(32):eaax2352.
  • Wendelken S, Page DM, Davis T, et al. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. J Neuroeng Rehabil. 2017;14(1):121.
  • Davis TS, Wark HAC, Hutchinson DT, et al. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J Neural Eng. 2016;13(3):036001.
  • Kluger DT, Joyner JS, Wendelken SM, et al. Virtual reality provides an effective platform for functional evaluations of closed-loop neuromyoelectric control. IEEE Trans Neural Syst Rehabil Eng. 2019;27(5):876–886.
  • Page DM, George JA, Kluger DT, et al. Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain after long-term hand amputation. Front Hum Neurosci. 2018;12:352.
  • Duncan CC, Kluger DT, Davis TS, et al. Selective decrease in allodynia with high-frequency neuromodulation via high-electrode-count intrafascicular peripheral nerve interface after brachial plexus injury. Neuromodulation. 2019;22(5):597–606.
  • Downey JE, Brooks J, Bensmaia SJ. Artificial sensory feedback for bionic hands. In: Hu X, editor. Intelligent biomechatronics in neurorehabilitation [Internet]. Elsevier; 2020. p. 131–145. [cited 2020 Oct 7]. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128149423000088
  • George JA, Page DM, Davis TS, et al. Long-welcom: http://biorxiv.org/lookup/doi/10.1101/2020.03.30.016683.
  • Tan DW, Schiefer MA, Keith MW, et al. A neural interface provides long-term stable natural touch perception. Sci Transl Med. 2014;6(257):257ra138–257ra138.
  • Tan DW, Schiefer MA, Keith MW, et al. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees. J Neural Eng. 2015;12(2):026002.
  • Kauhanen L, Nykopp T, Lehtonen J, et al. EEG and MEG brain-computer interface for tetraplegic patients. IEEE Trans Neural Syst Rehabil Eng. 2006;14(2):190–193.
  • Agashe HA, Contreras-Vidal JL. Reconstructing hand kinematics during reach to grasp movements from electroencephalographic signals. Annual International Conference of the IEEE Engineering in Medicine and Biology Society [Internet]. Boston, MA: IEEE; 2011 [cited 2020 Oct 7]. p. 5444–5447.
  • Mohamed AK, Marwala T, John LR. Single-trial EEG discrimination between wrist and finger movement imagery and execution in a sensorimotor BCI. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society [Internet]. Boston, MA: IEEE; 2011 [cited 2020 Oct 7]. p. 6289–6293.
  • Bradberry TJ, Gentili RJ, Contreras-Vidal JL. Decoding three-dimensional hand kinematics from electroencephalographic signals. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society [Internet]. Minneapolis, MN: IEEE; 2009 [cited 2020 Oct 7]. p. 5010–5013.
  • Yang J, Singh H, Hines EL, et al. Channel selection and classification of electroencephalogram signals: An artificial neural network and genetic algorithm-based approach. Artif Intell Med. 2012;55(2):117–126.
  • Schultz AE, Kuiken TA. Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities. Pm R. 2011;3(1):55–67.
  • Millán J del R. Brain-Computer Interfaces. In: Farina D, Jensen W, Akay M, editors. Introduction to neural engineering for motor rehabilitation [Internet]. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2013 [cited 2020 Oct 7]. p. 237–252.
  • Ryait HS, Arora AS, Agarwal R. Study of issues in the development of surface EMG controlled human hand. J Mater Sci Mater Med. 2009;20(S1):107–114.
  • Huang G, Zhang Z, Zhang D, et al. Spatio-spectral filters for low-density surface electromyographic signal classification. Med Biol Eng Comput. 2013;51(5):547–555.
  • Muceli S, Farina D. Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom. IEEE Trans Neural Syst Rehabil Eng. 2012;20(3):371–378.
  • Muzumdar A, editor. Powered upper limb prostheses: control, implementation and clinical application [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2004.
  • Ison M, Artemiadis P. The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control. J Neural Eng. 2014;11(5):051001.
  • Farina D, Jiang N, Rehbaum H, et al. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans Neural Syst Rehabil Eng. 2014;22(4):797–809.
  • Scheme E, Englehart K. Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use. J Rehabil Res Dev. 2011;48(6):643–659.
  • Benchoff B. Thalmic Labs shuts down free developer access update: it’s back again [Internet]. Hackaday. 2014; [cited 2020 Oct 1]. Available from: https://hackaday.com/2014/11/18/thalmic-labs-shuts-down-free-developer-access/.
  • Li Y, He K, Sun X, et al. Human-machine interface based on multi-channel single-element ultrasound transducers: a preliminary study. 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom) [Internet]. Munich, Germany: IEEE; 2016.
  • Ni D, Chen X, Yi W, et al. In vivo behavior of human muscle during isometric ramp contraction: A simultaneous EMG, MMG and ultrasonography investigation. 2012 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2012) [Internet]. Hong Kong, China: IEEE; 2012 [cited 2020 Oct 7]. p. 59–62.
  • Cole JP, Madhavan G, McLeod KJ. Vibromyographic quantification of voluntary isometric contractile force in the brachioradialis. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society [Internet]. New York, NY: IEEE; 2006. p. 1708–1710.
  • Alves N, Chau T. Vision-based segmentation of continuous mechanomyographic grasping sequences for training multifunction prostheses. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society [Internet]. New York, NY: IEEE; 2006. p. 3624–3627.
  • Silva J, Heim W, Chau T. MMG-based classification of muscle activity for prosthesis control. The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society [Internet]. San Francisco, CA, USA: IEEE; 2004. p. 968–971.
  • Barry DT, Leonard JA, Gitter AJ, et al. Acoustic myography as a control signal for an externally powered prosthesis. Arch Phys Med Rehabil. 1986;67(4):267–269.
  • Silva J, Heim W, Chau T. A self-contained, mechanomyography-driven externally powered prosthesis. Arch Phys Med Rehabil. 2005;86(10):2066–2070.
  • Posatskiy AO, Chau T. The effects of motion artifact on mechanomyography: a comparative study of microphones and accelerometers. J Electromyogr Kinesiol. 2012;22(2):320–324.
  • Posatskiy AO, Chau T. Design and evaluation of a novel microphone-based mechanomyography sensor with cylindrical and conical acoustic chambers. Med Eng Phys. 2012;34(8):1184–1190.
  • Castellini C, Passig G, Zarka E. Using ultrasound images of the forearm to predict finger positions. IEEE Trans Neural Syst Rehabil Eng. 2012;20(6):788–797.
  • Cooperberg PL, Tsang I, Truelove L, et al. Gray scale ultrasound in the evaluation of rheumatoid arthritis of the knee. Radiology. 1978;126(3):759–763.
  • Zheng YP, Chan MMF, Shi J, et al. Sonomyography: monitoring morphological changes of forearm muscles in actions with the feasibility for the control of powered prosthesis. Med Eng Phys. 2006;28(5):405–415.
  • Castellini C, Passig G. Ultrasound image features of the wrist are linearly related to finger positions. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems [Internet]. San Francisco, CA: IEEE; 2011. p. 2108–2114.
  • Fukumoto K, Muraki S, Tsubai M, et al. Calibration of cross-sectional images measured by an ultrasound-based muscle evaluation system. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society [Internet]. Minneapolis, MN: IEEE; 2009. p. 428–431.
  • Sikdar S, Rangwala H, Eastlake EB, et al. Novel method for predicting dexterous individual finger movements by imaging muscle activity using a wearable ultrasonic system. IEEE Trans Neural Syst Rehabil Eng. 2014;22(1):69–76.
  • Shi J, Hu S, Liu Z, et al. Recognition of finger flexion from ultrasound image with optical flow: a preliminary study. 2010 International Conference on Biomedical Engineering and Computer Science [Internet]. Wuhan, China: IEEE; 2010. p. 1–4.
  • Chen X, Zheng Y-P, Guo J-Y, et al. Sonomyography (SMG) control for powered prosthetic hand: a study with normal subjects. Ultrasound Med Biol. 2010;36(7):1076–1088.
  • Gelmetti A, Giardini ME, Lago P, et al. Preliminary study of muscle contraction assessment by NIR spectroscopy. In: Baldini F, Croitoru NI, Dickinson MR, et al. editors. Proceedings of SPIE - The International Society for Optical Engineering [Internet]. San Remo, Italy; 1998 [cited 2020 Oct 8]. p. 61–67. Available from: http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=931852
  • Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage. 2012;63(2):921–935.
  • McIntosh J, Marzo A, Fraser M, Sens  , et al. Detecting Hand Gestures with a Wearable Bracelet using Infrared Transmission and Reflection. Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology [Internet]. Québec City QC Canada: ACM; 2017. p. 593–597.
  • Moromugi S, Koujina Y, Ariki S, et al. Muscle stiffness sensor to control an assistance device for the disabled. Artif Life Robotics. 2004;8(1):42–45.
  • Xiao ZG, Menon C. A review of force myography research and development. Sensors. 2019;19(20):4557.
  • Radmand A, Scheme E, Englehart K. High-density force myography: a possible alternative for upper-limb prosthetic control. J Rehabil Res Dev. 2016;53(4):443–456.
  • Castellini C, Koiva R. Using a high spatial resolution tactile sensor for intention detection. 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR) [Internet]. Seattle, WA: IEEE; 2013. [cited 2020 Oct 8]. p. 1–7. Available from: http://ieeexplore.ieee.org/document/6650365/.
  • Dementyev A, Paradiso JA. WristFlex: low-power gesture input with wrist-worn pressure sensors. Proceedings of the 27th annual ACM symposium on user interface software and technology – UIST’14 [Internet]. Honolulu, Hawaii, USA: ACM Press; 2014. p. 161–166.
  • McIntosh J, McNeill C, Fraser M, et al. EMPress: Practical Hand Gesture Classification with Wrist-Mounted EMG and Pressure Sensing. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems [Internet]. San Jose California USA: ACM; 2016. p. 2332–2342.
  • Sugata H, Goto T, Hirata M, et al. Neural decoding of unilateral upper limb movements using single trial MEG signals. Brain Res. 2012;1468:29–37.
  • Kauhanen L, Nykopp T, Sams M. Classification of single MEG trials related to left and right index finger movements. Clin Neurophysiol. 2006;117(2):430–439.
  • Quandt F, Reichert C, Hinrichs H, et al. Single trial discrimination of individual finger movements on one hand: a combined MEG and EEG study. Neuroimage. 2012;59(4):3316–3324.
  • Lee J-H, Ryu J, Jolesz FA, et al. Brain-machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm . Neurosci Lett. 2009;450(1):1–6.
  • Fougner A, Scheme E, Chan ADC, et al. Resolving the limb position effect in myoelectric pattern recognition. IEEE Trans Neural Syst Rehabil Eng. 2011;19(6):644–651.
  • Silva J, Chau T, Goldenberg A. MMG-based multisensor data fusion for prosthesis control. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat No03CH37439) [Internet]. Cancun, Mexico: IEEE; 2003. p. 2909–2912.
  • Sakudo A, Kuratsune H, Kobayashi T, et al. Spectroscopic diagnosis of chronic fatigue syndrome by visible and near-infrared spectroscopy in serum samples. Biochem Biophys Res Commun. 2006;345(4):1513–1516.
  • Herrmann S, Attenberger A, Buchenrieder K. Prostheses Control with Combined Near-Infrared and Myoelectric Signals. In: Moreno-Díaz R, Pichler F, Quesada-Arencibia A, editors. Computer Aided Systems Theory – EUROCAST 2011 [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 601–608.
  • Herrmann S, Buchenrieder K. Fusion of myoelectric and near-infrared signals for prostheses control. Proceedings of the 4th International Convention on Rehabilitation Engineering & Assistive Technology [Internet]. S.l.: Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre; 2010.
  • Attenberger A, Buchenrieder K. Modeling and visualization of classification-based control schemes for upper limb prostheses. 2012 IEEE 19th International Conference and Workshops on Engineering of Computer-Based Systems [Internet]. Novi Sad, Serbia: IEEE; 2012. p. 188–194.
  • Bi W, Olubiyi O, Tharin S, et al. Neurosurgical treatment planning. In: Newton H, editor. Handbook of neuro-oncology neuroimaging. 2nd ed. San Diego (CA): Academic Press; 2016.
  • Fifer MS, Acharya S, Benz HL, et al. Toward electrocorticographic control of a dexterous upper limb prosthesis: building brain-machine interfaces. IEEE Pulse. 2012;3(1):38–42.
  • Ohnishi K, Weir RF, Kuiken TA. Neural machine interfaces for controlling multifunctional powered upper-limb prostheses. Expert Rev Med Devices. 2007;4(1):43–53.
  • Dhillon GS, Krüger TB, Sandhu JS, et al. Effects of short-term training on sensory and motor function in severed nerves of long-term human amputees. J Neurophysiol. 2005;93(5):2625–2633.
  • Niedermeyer E, Lopes da Silva FH, editors. Electroencephalography: basic principles, clinical applications, and related fields. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2005.
  • Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23(6):815–850.
  • Kübler A, Furdea A, Halder S, et al. A brain-computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients. Ann N Y Acad Sci. 2009;1157:90–100.
  • Schlögl A, Slater M, Pfurtscheller G. Presence research and EEG. In Proceedings of the 5th International Workshop on Presence, Porto, Portugal; 2002. p. 9–11.
  • Cram JR, Kasman GS, Holtz J. Introduction to surface electromyography. Gaithersburg, MD: Aspen Publishers; 1998.
  • Kamen G. Electromyographic Kinesiology. Research methods in biomechanics. Second edition. Champaign, Illinois: Human Kinetics; 2014. p. 179–202.
  • Guo W, Sheng X, Liu H, et al. Mechanomyography assisted myoeletric sensing for upper-extremity prostheses: a hybrid approach. IEEE Sensors J. 2017;17(10):3100–3108.
  • Boushel R, Langberg H, Olesen J, et al. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease: NIRS in health and disease. Scand J Med Sci Sports. 2001;11(4):213–222.
  • Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol. 2004;29(4):463–487.
  • Singh S. Magnetoencephalography: basic principles. Ann Indian Acad Neurol. 2014;17(5):107.
  • What is Magnetoencephalography (MEG)? [Internet]. University of Washington; 2019 [cited 2019 Oct 17]. Available from: http://ilabs.washington.edu/what-magnetoencephalography-meg.
  • Bradberry TJ, Rong F, Contreras-Vidal JL. Decoding center-out hand velocity from MEG signals during visuomotor adaptation. Neuroimage. 2009;47(4):1691–1700.
  • Scheme E, Fougner A, Stavdahl Ø, et al. Examining the adverse effects of limb position on pattern recognition based myoelectric control. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology [Internet]. Buenos Aires: IEEE; 2010. p. 6337–6340.
  • Woodward R, Shefelbine S, Vaidyanathan R. Integrated grip switching and grasp control for prosthetic hands using fused inertial and mechanomyography measurement. 2015 Swarm/Human Blended Intelligence Workshop (SHBI) [Internet]. Cleveland, OH, USA: IEEE; 2015. p. 1–8.
  • Guo W, Sheng X, Liu H, et al. Development of a multi-channel compact-size wireless hybrid sEMG/NIRS sensor system for prosthetic manipulation. IEEE Sensors J. 2016;16(2):447–456.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.