571
Views
24
CrossRef citations to date
0
Altmetric
Review

Biomaterials and 3D printing techniques used in the medical field

&
Pages 290-302 | Received 10 Aug 2020, Accepted 19 Jan 2021, Published online: 30 Apr 2021

References

  • Bandyopadhyay A, Bose S, Das S. 3D printing of biomaterials. MRS Bull. 2015;40(2):108–114.
  • Crump SS. Apparatus and method for creating three-dimensional objects. United States patent US 5,121,329. 1992 Jun 9.
  • Sanders RC Jr., Forsyth JL, Philbrook KF. 3-D model making. United States patent US 5,740,051. 1998 Apr 14.
  • Hull CW. Apparatus for production of three-dimensional objects by stereolithography. United States patent US 4,575,330. 1986. p. 1–16.
  • Tarafder S, Dernell WS, Bandyopadhyay A, et al. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. J Biomed Mater Res B Appl Biomater. 2015;103(3):679–690.
  • Demirci U, Montesano G. Single cell epitaxy by acoustic picolitre droplets. Lab Chip. 2007;7(9):1139–1145.
  • Demirci U, Montesano G. Cell encapsulating droplet vitrification. Lab Chip. 2007;7(11):1428–1433.
  • Gaebel R, Ma N, Liu J, et al. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials. 2011;32(35):9218–9230.
  • Demirci U. Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology. J Microelectromech Syst. 2006;15(4):957–966.
  • Ingber DE, Mow VC, Butler D, et al. Tissue engineering and developmental biology: going biomimetic. Tissue Eng. 2006;12(12):3265–3283.
  • Belhabib S, Guessasma S. Compression performance of hollow structures: from topology optimisation to design 3D printing. Int J Mech Sci. 2017;133:728–739.
  • Rezwan K, Chen QZ, Blaker JJ, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–3431.
  • Godbey WT, Atala A. In vitro systems for tissue engineering. Ann N Y Acad Sci. 2002;961:10–26.
  • Dong L, Wang SJ, Zhao XR, et al. 3D-printed poly(ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci Rep. 2017;7(1):13412.
  • Shim J-H, Won J-Y, Park J-H, et al. Effects of 3D-printed polycaprolactone/β-tricalcium phosphate membranes on guided bone regeneration. Int J Mol Sci. 2017;18(5):899.
  • Mills D, Tappa K, Jammalamadaka U, et al. The use of 3D printing in the fabrication of nasal stents. Inventions. 2017;3(1):1.
  • Weisman JA, Nicholson JC, Tappa K, et al. Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications. Int J Nanomedicine. 2015;10:357–370.
  • Tappa K, Jammalamadaka U, Ballard DH, et al. Medication eluting devices for the field of OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof of concept study. PLoS One. 2017;12(8):e0182929.
  • Horst DJ, Tebcherani SM, Kubaski ET, et al. Bioactive potential of 3D-printed oleo-gum-resin disks: B. papyrifera, C. myrrha, and S. benzoin loading nanooxides—TiO2, P25, Cu2O, and MoO3. Bioinorg Chem Appl. 2017;2017:6398167.
  • Weisman J, Jammalamadaka U, Tappa K, et al. Doped halloysite nanotubes for use in the 3D printing of medical devices. Bioengineering. 2017;4(4):96.
  • Goyanes A, Det-Amornrat U, Wang J, et al. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41–48.
  • Goyanes A, Wang J, Buanz A, et al. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm. 2015;12(11):4077–4084.
  • Shen S, Wang H, Xue Y, et al. Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery. Sci Rep. 2017;7(1):11048.
  • Skardal A, Zhang J, McCoard L, et al. Dynamically crosslinked gold nanoparticle – hyaluronan hydrogels. Adv Mater. 2010;22(42):4736–4740.
  • Skardal A, Zhang J, McCoard L, et al. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A. 2010;16(8):2675–2685.
  • Rhee S, Puetzer JL, Mason BN, et al. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng. 2016;2(10):1800–1805.
  • Laronda MM, Rutz AL, Xiao S, et al. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun. 2017;8:15261.
  • Markstedt K, Mantas A, Tournier I, et al. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16(5):1489–1496.
  • Nguyen D, Hägg DA, Forsman A, et al. Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep. 2017;7(1):658.
  • Tan Z, Parisi C, Di Silvio L, et al. Cryogenic 3D printing of super soft hydrogels. Sci Rep. 2017;7(1):16293.
  • Lee J-S, Hong JM, Jung JW, et al. 3D printing of composite tissue with complex shape applied to ear regeneration. Bio-fabrication. 2014;6:24103.
  • Phillippi JA, Miller E, Weiss L, et al. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells. 2008;26(1):127–134.
  • Duan B, Hockaday LA, Kang KH, et al. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101(5):1255–1264.
  • Fedorovich NE, Alblas J, de Wijn JR, et al. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng. 2007;13(8):1905–1925.
  • Hsieh F-Y, Lin H-H, Hsu S. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials. 2015;71:48–57.
  • Ligon SC, Liska R, Stampfl J, et al. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212–10290.
  • Liu T, Guessasma S, Zhu J, et al. Microstructural defects induced by stereolithography and related compressive behaviour of polymers. J Mater Process Technol. 2018;251:37–46.
  • Mandrycky C, Wang Z, Kim K, et al. 3D bio-printing for engineering complex tissues. Biotechnol Adv. 2016;34(4):422–434.
  • Williams DF. On the nature of biomaterials. Biomaterials. 2009;30(30):5897–5909.
  • Williams D. The continuing evolution of biomaterials. Biomaterials. 2011;32(1):1–2.
  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–785.
  • Xu T, Binder KW, Albanna MZ, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 2013;5(1):015001.
  • Prestwich GD. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery. Acc Chem Res. 2008;41(1):139–148.
  • Mironov V, Reis N, Derby B. Review: bio-printing: a beginning. Tissue Eng. 2006;12(4):631–634.
  • Hesse E, Hefferan TE, Tarara JE, et al. Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells. J Biomed Mater Res A. 2010;94:442–449.
  • Allison DD, Grande-Allen. Review KJ. Review. Hyaluronan: a powerful tissue engineering tool. Tissue Eng. 2006;12(8):2131–2140.
  • Knudson CB, Knudson W. Cartilage proteoglycans. Semin Cell Dev Biol. 2001;12(2):69–78.
  • Schiavinato A, Finesso M, Cortivo R, et al. Comparison of the effects of intra-articular injections of hyaluronan and its chemically cross-linked derivative (Hylan G-F20) in normal rabbit knee joints. Clin Exp Rheumatol. 2002;20(4):445–454.
  • Prestwich GD, Kuo JW. Chemically-modified HA for therapy and regenerative medicine. Curr Pharm Biotechnol. 2008;9(4):242–245.
  • Miki D, Dastgheib K, Kim T, et al. A photopolymerized sealant for corneal lacerations. Cornea. 2002;21(4):393–399.
  • Kirker KR, Luo Y, Morris SE, et al. Glycosaminoglycan hydrogels as supplemental wound dressings for donor sites. J Burn Care Rehabil. 2004;25(3):276–286.
  • Liu Y, Shu XZ, Prestwich GD. Tumor engineering: orthotopic cancer models in mice using cell-loaded, injectable, cross-linked hyaluronan-derived hydrogels. Tissue Eng. 2007;13(5):1091–1101.
  • Skardal A, Smith L, Bharadwaj S, et al. Tissue specific synthetic ECM hydrogels for 3-D in vitro maintenance of hepatocyte function. Biomaterials. 2012;33(18):4565–4575.
  • Dainiak MB, Allan IU, Savina IN, et al. Gelatin-fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study. Biomaterials. 2010;31(1):67–76.
  • Dubsky M, Kubinova S, Sirc J, et al. Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing. J Mater Sci Mater Med. 2012;23(4):931–941.
  • Kanda N, Morimoto N, Ayvazyan AA, et al. Evaluation of a novel collagen-gelatin scaffold for achieving the sustained release of basic fibroblast growth factor in a diabetic mouse model. J Tissue Eng Regen Med. 2014;8(1):29–40.
  • Xu K, Cantu DA, Fu Y, et al. Thiol-ene Michael-type formation of gelatin/poly(ethylene glycol) biomatrices for three-dimensional mesenchymal stromal/stem cell administration to cutaneous wounds. Acta Biomater. 2013;9(11):8802–8814.
  • Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication. 2014;6(2):024105.
  • Soman P, Chung PH, Zhang AP, et al. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng. 2013;110(11):3038–3047.
  • Wust S, Godla ME, Muller R, et al. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 2014;10(2):630–640.
  • Santos E, Zarate J, Orive G, et al. Biomaterials in cell microencapsulation. Adv Exp Med Biol. 2010;670:5–21.
  • Opara EC, Mirmalek-Sani SH, Khanna O, et al. Design of a bioartificial pancreas. J Investig Med. 2010;58(7):831–837.
  • Cohen J, Zaleski KL, Nourissat G, et al. Survival of porcine mesenchymal stem cells over the alginate recovered cellular method. J Biomed Mater Res A. 2011;96(1):93–99.
  • Jia J, Richards DJ, Pollard S, et al. Engineering alginate as bioink for bioprinting. Acta Biomater. 2014;10(10):4323–4331.
  • Ahmed TA, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev. 2008;14(2):199–215.
  • Skardal A, Mack D, Kapetanovic E, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1(11):792–802.
  • Elgalal M, Kozakiewicz M, Olszycki M, et al. Custom implant design and surgical pre-planning using rapid prototyping and anatomical models for the repair of orbital floor fractures. Eur Radiol. 2009;19(Suppl. 1):S397.
  • D'Urso PS, Earwaker WJ, Barker TM, et al. Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg. 2000;53(3):200–204.
  • Faber J, Berto P, Quaresma M. Rapid prototyping as a tool for diagnosis and treatment planning for maxillary canine impaction. Am J Orthod Dentofacial Orthop. 2006;129(4):583–589.
  • Mavili M, Canter H, Saglam-Aydinatay B, et al. Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery. J Craniofac Surg. 2007;18(4):740–747.
  • Muller A, Krishnan K, Uhl E, et al. The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg. 2003;14:899–914.
  • Poukens J, Haex J, Riediger D. The use of rapid prototyping in the preoperative planning of distraction osteogenesis of the cranio-maxillofacial skeleton. Comput Aided Surg. 2003;8(3):146–154.
  • Wagner J, Baack B, Brown G, et al. Rapid 3-dimensional prototyping for surgical repair of maxillofacial fractures: a technical note. J Oral Maxillofac Surg. 2004;62(7):898–901.
  • Guarino J, Tennyson S, McCain G, et al. Rapid prototyping technology for surgeries of the pediatric spine and pelvis: benefits analysis. J Pediatr Orthop. 2007;27(8):955–960.
  • Hurson C, Tansey A, O’Donnchadha B, et al. Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury. 2007;38(10):1158–1162.
  • Wurm G, Tomancok B, Pogady P, et al. Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg. 2004;100(1):139–145.
  • Giesel FL, Hart AR, Hahn HK, et al. 3D reconstructions of the cerebral ventricles and volume quantification in children with brain malformations. Acad Radiol. 2009;16(5):610–617.
  • Paiva W, Amorim R, Bezerra D, et al. Application of the stereolithography technique in complex spine surgery. Arq Neuropsiquiatr. 2007;65(2B):443–445.
  • Armillotta A, Bonhoeffer P, Dubini G, et al. Use of rapid prototyping models in the planning of percutaneous pulmonary valved stent implantation. Proc Inst Mech Eng H. 2007;221(4):407–416.
  • Kim MS, Hansgen AR, Wink O, et al. Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation. 2008;117(18):2388–2394.
  • Hiramatsu H, Yamaguchi H, Nimi S, et al. Rapid prototyping of the larynx for laryngeal frame work surgery. Nihon Jibiinkoka Gakkai Kaiho. 2004;107(10):949–955.
  • D'Urso PS, Barker TM, Earwaker WJ, et al. Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial. J Craniomaxillofac Surg. 1999;27(1):30–37.
  • Kalet I, Wu J, Lease M, et al. Anatomical information in radiation treatment planning. Proceedings of the AMIA Symposium; 1999. p. 291–295.
  • Sun S, Wu C. Using the full scale 3D solid anthropometric model in radiation oncology positioning and verification. Conf Proc IEEE Eng Med Biol Soc. 2004;5:3432–3435.
  • Zemnick C, Woodhouse S, Gewanter R, et al. Rapid prototyping technique for creating a radiation shield. J Prosthet Dent. 2007;97(4):236–241.
  • Singare S, Liu Y, Li D, et al. Individually prefabricated prosthesis for maxilla reconstruction. J Prosthodont. 2008;17(2):135–140.
  • Lee M-Y, Chang C-C, Ku YC. New layer-based imaging and rapid prototyping techniques for computer-aided design and manufacture of custom dental restoration. J Med Eng Technol. 2008;32(1):83–90.
  • Dai K-R, Yan M-N, Zhu Z-A, et al. Computer-aided custom-made hemipelvic prosthesis used in extensive pelvic lesions. J Arthroplasty. 2007;22(7):981–986.
  • Harrysson O, Hosni Y, Nayfeh J. Custom-designed orthopedic implants evaluated using finite element analysis of patient specific computed tomography data: femoral-component case study. BMC Musculoskelet Disord. 2007;8:91.
  • He J, Li D, Lu B, et al. Custom fabrication of composite tibial hemi-knee joint combining CAD/CAE/CAM techniques. Proc Inst Mech Eng H. 2006;220:823–830.
  • Wang Z, Teng Y, Li D. Fabrication of custom-made artificial semi-knee joint based on rapid prototyping technique: computer-assisted design and manufacturing. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2004;18:347–351.
  • Stevens B, Yang Y, Mohandas A, et al. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res B Appl Biomater. 2008;85(2):573–582.
  • Peltola SM, Melchels FPW, Grijpma DW, et al. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med. 2008;40(4):268–280.
  • Subburaj K, Nair C, Rajesh S, et al. Rapid development of auricular prosthesis using CAD and rapid prototyping technologies. Int J Oral Maxillofac Surg. 2007;36(10):938–943.
  • Ciocca L, Mingucci R, Gassino G, et al. CAD/CAM ear model and virtual construction of the mold. J Prosthet Dent. 2007;98(5):339–343.
  • Boland T, Xu T, Damon B, et al. Application of inkjet printing to tissue engineering. Biotechnol J. 2006;1(9):910–917.
  • Campbell PG, Weiss LE. Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther. 2007;7(8):1123–1127.
  • Canstein C, Cachot P, Faust A, et al. 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magn Reson Med. 2008;59(3):535–546.
  • Chung S, Son Y, Shin S, et al. Nasal airflow during respiratory cycle. Am J Rhinol. 2006;20(4):379–384.
  • Meaney J, Goyen M. Recent advances in contrast-enhanced magnetic resonance angiography. Eur Radiol. 2007;17(Suppl. 2):B2–B6.
  • Tek P, Chiganos T, Mohammed J, et al. Rapid prototyping for neuroscience and neural engineering. J Neurosci Methods. 2008;172(2):263–269.
  • de Zélicourt D, Pekkan K, Kitajima H, et al. Single-step stereolithography of complex anatomical models for optical flow measurements. J Biomech Eng. 2005;127(1):204–207.
  • Sulaiman A, Boussel L, Taconnet F, et al. In vitro non-rigid life-size model of aortic arch aneurysm for endovascular prosthesis assessment. Eur J Cardiothorac Surg. 2008;33(1):53–57.
  • Pekkan K, Dasi LP, de Zélicourt D, et al. Hemodynamic performance of stage-2 univentricular reconstruction: Glenn vs. hemi-Fontan templates. Ann Biomed Eng. 2009;37(1):50–63.
  • Giesel F, Mehndiratta A, Von Tengg-Kobligk H, et al. Rapid prototyping raw models on the basis of high resolution computed tomography lung data for respiratory flow dynamics. Acad Radiol. 2009;16(4):495–498.
  • Suzuki M, Ogawa Y, Kawano A, et al. Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol. 2004;124(4):400–402.
  • Knox K, Kerber C, Singel S, et al. Rapid prototyping to create vascular replicas from CT scan data: making tools to teach, rehearse, and choose treatment strategies. Catheter Cardiovasc Interv. 2005;65(1):47–53.
  • Bruyere F, Leroux C, Brunereau L, et al. Rapid prototyping model for percutaneous nephrolithotomy training. J Endourol. 2008;22(1):91–96.
  • Kalejs M, von Segesser LK. Rapid prototyping of compliant human aortic roots for assessment of valved stents. Interact Cardiovasc Thorac Surg. 2009;8(2):182–186.
  • Miller JS, Stevens KR, Yang MT, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(9):768–774.
  • Kolesky DB, Truby RL, Gladman AS, et al. 3D bio-printing of vascularized; heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124–3130.
  • Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758.
  • Hassana BO, Guessasma S, Belhabib S, et al. Explaining the difference between real part and virtual design of 3D printed porous polymer at the microstructural level. Macromol Mater Eng. 2016;301(5):566–576.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.