637
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Visual cortical prosthesis: an electrical perspective

ORCID Icon, & ORCID Icon
Pages 394-407 | Received 29 Dec 2020, Accepted 15 Mar 2021, Published online: 12 Apr 2021

References

  • World Health Organization. 2019. World report on vision. Geneva (Switzerland): World Health Organization.
  • Congdon NG, Friedman DS, Lietman T. Important causes of visual impairment in the world today. Jama. 2003;290(15):2057–2060.
  • Foerster O. The cerebral cortex in man. Lancet. 1931;2:309–312.
  • Brindley G. The number of information channels needed for efficient reading. J Physiol. 1965;177:P44.
  • Dobelle WH. Artificial vision for the blind by connecting a television camera to the visual cortex. Asaio J. 2000;46(1):3–9.
  • Dobelle WH, Mladejovsky MG, Evans JR, et al. "Braille" reading by a blind volunteer by visual cortex stimulation. Nature. 1976;259(5539):111–112.
  • Dobelle WH, Mladejovsky M, Girvin J. Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science. 1974;183(4123):440–444.
  • Dobelle W, Mladejovsky M. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol. 1974;243(2):553–576.
  • Bradley DC, Troyk PR, Berg JA, et al. Visuotopic mapping through a multichannel stimulating implant in primate v1. J Neurophysiol. 2005;93(3):1659–1670.
  • Niketeghad S, Pouratian N. Brain machine interfaces for vision restoration: the current state of cortical visual prosthetics. Neurotherapeutics. 2019;16(1):134–143.
  • Tehovnik EJ, Slocum WM, Schiller PH. Delaying visually guided saccades by microstimulation of macaque v1: spatial properties of delay fields. Eur J Neurosci. 2005;22(10):2635–2643.
  • Bhowmick A, Hazarika S. An insight into assistive technology for the visually impaired and blind people: state-of-the-art and future trends. J Multimodal User Interfaces. 2017;11(2):149–124. 01).
  • Foroushani AN, Pack CC, Sawan M. Cortical visual prostheses: from microstimulation to functional percept. J Neural Eng. 2018;15(2):021005.
  • Lewis PM, Ackland HM, Lowery AJ, et al. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res. 2015;1595:51–73.
  • Biran R, Martin DC, Tresco PA. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp Neurol. 2005;195(1):115–126.
  • Potter KA, Buck AC, Self WK, et al. Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses. J Neural Eng. 2012;9(4):046020
  • Dymond AM. Characteristics of the metal-tissue interface of stimulation electrodes. IEEE Trans Biomed Eng. 1976;BME-23(4):274–280.
  • Malmivuo J, Plonsey R. Bioelectromagnetism – principles and applications of bioelectric and biomagnetic fields. New York: Oxford University Press; 1995.
  • Reza Ranjandish OS, Schmid A. 2018. A fully fail-safe capacitive-based charge metering method for active charge balancing in deep brain stimulation. 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), pp. 249–252.
  • Cogan SF, Hara S, Ludwig KA. The safe delivery of electrical currents and neuromodulation. In: Krames ES, Hunter Peckham P, Rezai AR, editors. Neuromodulation. 2nd ed. New York (NY): Academic Press; 2018. p. 83–94.
  • Mutch WA, Hansen A. Brain extracellular pH changes during alterations in substrate supply. New York (NY): Springer; 1985.
  • Raimondo JV, Burman RJ, Katz AA, et al. Ion dynamics during seizures. Front Cell Neurosci. 2015;9:419.
  • Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008;10:275–309.
  • Lettieri C, Rinaldo S, Devigili G, et al. Clinical outcome of deep brain stimulation for dystonia: constant-current or constant-voltage stimulation? A non-randomized study. Eur J Neurol. 2015;22(6):919–926.
  • Ranjandish R, Schmid A. 2017. A compact size charge-mode stimulator using a low-power active charge balancing method for deep brain stimulation (dbs). In 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4.
  • Shannon RV. A model of safe levels for electrical stimulation. IEEE Trans Biomed Eng. 1992;39(4):424–426.
  • Hancu I, Boutet A, Fiveland E, et al. On the (non-)equivalency of monopolar and bipolar settings for deep brain stimulation fMRI studies of Parkinson's disease patients. J Magn Reson Imaging. 2019;49(6):1736–1749.
  • Stark P, Fazio G, Boyd ES. Monopolar and bipolar stimulation of the brain. Am J Physiol – Legacy Content. 1962;203(2):371–373.
  • Merrill DR, Bikson M, Jefferys JG. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141(2):171–198.
  • Cui XT, Zhou DD. Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(4):502–508.
  • Pranti AS, Schander A, Bödecker A, et al. PEDOT: PSS coating on gold microelectrodes with excellent stability and high charge injection capacity for chronic neural interfaces. Sens Actuators B. 2018;275:382–393.
  • Chen SC, Suaning GJ, Morley JW, et al. Simulating prosthetic vision: II. Measuring functional capacity. Vision Res. 2009;49(19):2329–2343.
  • Chen SC, Suaning GJ, Morley JW, et al. Simulating prosthetic vision: I. Visual models of phosphenes. Vision Res. 2009;49(12):1493–1506.
  • Cha K, Horch K, Normann RA. Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system. Ann Biomed Eng. 1992;20(4):439–449.
  • Sommerhalder J, Oueghlani E, Bagnoud M, et al. Simulation of artificial vision: I. Eccentric reading of isolated words, and perceptual learning. Vision Res. 2003;43(3):269–283.
  • Wandell BA, Dumoulin SO, Brewer AA. Visual field maps in human cortex. Neuron. 2007;56(2):366–383.
  • Fu L, Cai S, Zhang H, et al. Psychophysics of reading with a limited number of pixels: towards the rehabilitation of reading ability with visual prosthesis. Vision Res. 2006;46(8-9):1292–1301.
  • Vurro M, Baselli G, Orabona F, et al. 2006. Simulation and assessment of bioinspired visual processing system for epi-retinal prostheses. Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE. p. 3278–3281.
  • Chen S, Hallum L, Lovell N, et al. Visual acuity measurement of prosthetic vision: a virtual-reality simulation study. J Neural Eng. 2005;2(1):S135–S145.
  • Irons JL, Gradden T, Zhang A, et al. Face identity recognition in simulated prosthetic vision is poorer than previously reported and can be improved by caricaturing. Vision Res. 2017;137:61–79.
  • Rheede J. J v, Kennard C, Hicks SL. Simulating prosthetic vision: optimizing the information content of a limited visual display. J Vision. 2010;10(14):32–32.
  • Zhao Y, Geng X, Li Q, et al. Recognition of a virtual scene via simulated prosthetic vision. Front Bioeng Biotechnol. 2017;5:58.
  • Brindley GS, Lewin W. The sensations produced by electrical stimulation of the visual cortex. J Physiol. 1968;196(2):479–493.
  • Rushton DN, Brindley GS. Short- and long-term stability of cortical electrical phosphenes. In: Rose RC, editor. Physiological Aspects of Clinical Neurology. London: Blackwell Scientific Publishing; 1977. p. 123–153.
  • Pollen D. Some perceptual effects of electrical stimulation of the visual cortex in man. Nervous System. 1975;2:519–528.
  • Pollen DA. Responses of single neurons to electrical stimulation of the surface of the visual cortex. Brain Behav Evol. 1977;14(1–2):67–86.
  • Winawer J, Parvizi J. Linking electrical stimulation of human primary visual cortex, size of affected cortical area, neuronal responses, and subjective experience. Neuron. 2016;92(6):1213–1219.
  • Tehovnik EJ, Slocum WM, Schiller PH. Microstimulation of v1 delays the execution of visually guided saccades. Eur J Neurosci. 2004;20(1):264–272.
  • Bosking WH, Sun P, Ozker M, et al. Saturation in phosphene size with increasing current levels delivered to human visual cortex. J Neurosci. 2017;37(30):7188–7197.
  • Bak M, Girvin J, Hambrecht F, et al. Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput. 1990;28(3):257–259.
  • Beauchamp MS, Oswalt D, Sun P, et al. Dynamic stimulation of visual cortex produces form vision in sighted and blind humans. Cell. 2020;181(4):774–783.
  • Niketeghad S, Muralidharan A, Patel U, et al. Phosphene perceptions and safety of chronic visual cortex stimulation in a blind subject. J Neurosurg. 2019;132(6):2000–2007.
  • Brindley G. Effects of electrical stimulation of the visual cortex. Hum Neurobiol. 1982;1(4):281–283.
  • Bosking W, Foster B, Sun P, et al. 2018. Rules governing perception of multiple phosphenes by human observers. bioRxiv, 302547.
  • Kotler S. Vision quest a half century of artificial-sight research has succeeded and now this blind man can see behind the bionic-eye breakthrough. Wired. 2002;10(9):94–94.
  • Lu Y, Lyu H, Richardson AG, et al. Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing. Sci Rep. 2016;6:33526.
  • Viventi J, Kim D-H, Vigeland L, et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci. 2011;14(12):1599–1605.
  • Rush AD, Troyk PR. A power and data link for a wireless-implanted neural recording system. IEEE Trans Biomed Eng. 2012;59(11):3255–3262.
  • Fernández E, Normann RA. Cortivis approach for an intracortical visual prostheses. In Artificial vision. New York (NY): Springer; 2017. pp. 191–201.
  • Lowery AJ, Rosenfeld JV, Rosa MG, et al. Monash vision group’s gennaris cortical implant for vision restoration. In: Gabel V, editor. Artificial vision. New York (NY): Springer, Cham; 2017. pp. 215–225.
  • Schmidt EM, Bak MJ, Hambrecht FT, et al. Feasibility of a visual prosthesis for the blind based on intracortical micro stimulation of the visual cortex. Brain. 1996;119(2):507–522.
  • Tehovnik EJ. Electrical stimulation of neural tissue to evoke behavioral responses. J Neurosci Methods. 1996;65(1):1–17.
  • Schiller PH, Tehovnik EJ. Visual prosthesis. Perception. 2008;37(10):1529–1559.
  • Normann RA, Maynard EM, Rousche PJ, et al. A neural interface for a cortical vision prosthesis. Vision Res. 1999;39(15):2577–2587.
  • Normann RA, Warren D, Koulakov A. 2003. Representations and dynamics of representations of simple visual stimuli by ensembles of neurons in cat visual cortex studied with a microelectrode array. Conference Proceedings. First International IEEE EMBS Conference on Neural Engineering, 2003. p. 91–94.
  • Fernández E, Alfaro A, González-López P. Toward long-term communication with the brain in the blind by intracortical stimulation: challenges and future prospects. Front Neurosci. 2020;14:681.
  • DeYoe EA, Lewine JD, Doty RW. Laminar variation in threshold for detection of electrical excitation of striate cortex by macaques. J Neurophysiol. 2005;94(5):3443–3450.
  • Tehovnik EJ, Slocum WM, Smirnakis SM, et al. Microstimulation of visual cortex to restore vision. Prog Brain Res. 2009;175:347–375.
  • Bartlett J, Doty R. An exploration of the ability of macaques to detect microstimulation of striate cortex. Acta Neurobiol Exp. 1980;40(4):713–727.
  • Tehovnik EJ, Slocum WM, Schiller PH. Saccadic eye movements evoked by microstimulation of striate cortex. Eur J Neurosci. 2003;17(4):870–878.
  • Troyk P, Bak M, Berg J, et al. A model for intracortical visual prosthesis research. Artif Organs. 2003;27(11):1005–1015.
  • Fernandez E, Soto C, Alfaro A, et al. Development of a cortical visual neuroprosthesis for the blind: preliminary results. Invest Ophthalmol Visual Sci. 2019;60(9):4021–4021.
  • Chen X, Wang F, Fernandez E, et al. Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex. Science. 2020;370(6521):1191–1196.
  • Rosenfeld JV, Wong YT, Yan E, et al. Tissue response to a chronically implantable wireless, intracortical visual prosthesis (gennaris array). J Neural Eng. 2020;17(4):046001.
  • Allison-Walker TJ, Hagan MA, Price NSC, et al. Local field potential phase modulates neural responses to intracortical electrical stimulation. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020 July.
  • Cohen ED. Prosthetic interfaces with the visual system: biological issues. J Neural Eng. 2007;4(2):R14–R31.
  • Polanco M, Bawab S, Yoon H. Computational assessment of neural probe and brain tissue interface under transient motion. Biosensors. 2016;6(2):27
  • Liu X, McCreery DB, Carter RR, et al. Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE Trans Rehabil Eng. 1999;7(3):315–326.
  • Warren DJ, Normann RA. Functional reorganization of primary visual cortex induced by electrical stimulation in the cat. Vision Res. 2005;45(5):551–565.
  • Grill WM, Mortimer JT. Electrical properties of implant encapsulation tissue. Ann Biomed Eng. 1994;22(1):23–33.
  • Weiland JD, Anderson DJ. Chronic neural stimulation with thin-film, iridium oxide electrodes. IEEE Trans Biomed Eng. 2000;47(7):911–918.
  • Troyk P, Detlefsen D, DeMichele G. 2006. A multifunctional neural electrode stimulation asic using neurotalk tm interface. Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE. p. 2994–2997.
  • Rousche PJ, Pellinen DS, Pivin DP, et al. Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans Biomed Eng. 2001;48(3):361–371.
  • Kozai TD, Jaquins-Gerstl AS, Vazquez AL, et al. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem Neurosci. 2015;6(1):48–67.
  • Salatino JW, Ludwig KA, Kozai TD, et al. Glial responses to implanted electrodes in the brain. Nat Biomed Eng. 2017;1(11):862–877.
  • Jankowska E, Smith D. Antidromic activation of renshaw cells and their axonal projections. Acta Physiol Scand. 1973;88(2):198–214.
  • McIntyre CC, Grill WM. Selective microstimulation of central nervous system neurons. Ann Biomed Eng. 2000;28(3):219–233.
  • Ranck JB. Jr, Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98(3):417–440.
  • Grill WM, Mortimer JT. Stimulus waveforms for selective neural stimulation. IEEE Eng Med Biol Mag. 1995;14(4):375–385.
  • Sahin M, Tie Y. Non-rectangular waveforms for neural stimulation with practical electrodes. J Neural Eng. 2007;4(3):227–233.
  • Kumsa D, Hudak EM, Montague FW, et al. Electrical neurostimulation with imbalanced waveform mitigates dissolution of platinum electrodes. J Neural Eng. 2016;13(5):054001.
  • Bettinger CJ, Ecker M, Kozai TDY, et al. Recent advances in neural interfaces—materials chemistry to clinical translation. MRS Bull. 2020;45(8):655–668.
  • Cagnan H, Denison T, McIntyre C, et al. Emerging technologies for improved deep brain stimulation. Nat Biotechnol. 2019;37(9):1024–1033.
  • Wei XF, Grill WM. Analysis of high-perimeter planar electrodes for efficient neural stimulation. Front Neuroeng. 2009;2:15.
  • Park H, Takmakov P, Lee H. Electrochemical evaluations of fractal microelectrodes for energy efficient neurostimulation. Sci Rep. 2018;8(1):4375.
  • Brunton E, Lowery AJ, Rajan R. A comparison of microelectrodes for a visual cortical prosthesis using finite element analysis. Front Neuroeng. 2012;5:23.
  • Butson CR, McIntyre CC. Role of electrode design on the volume of tissue activated during deep brain stimulation. J Neural Eng. 2006;3(1):1–8.
  • Wei XF, Grill WM. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes. J Neural Eng. 2005;2(4):139–147.
  • Towle VL, Pytel P, Lane F, et al. Postmortem investigation of a human cortical visual prosthesis that was implanted for 36 years. J Neural Eng. 2020;17(4):045010
  • Liu X, McCreery DB, Bullara LA, et al. Evaluation of the stability of intracortical microelectrode arrays. IEEE Trans Neural Syst Rehabil Eng. 2006;14(1):91–100.
  • Kipke DR, Shain W, Buzsáki G, et al. Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci. 2008;28(46):11830–11838.
  • Thompson MC, Herron JA, Brown T, et al. Demonstration of a stable chronic electrocorticography-based brain–computer interface using a deep brain stimulator. 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC); 2016. pp. 002936–002941.
  • Edell D, Toi V, McNeil V, et al. Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex. IEEE Trans Biomed Eng. 1992;39(6):635–643.
  • Cellot G, Lagonegro P, Tarabella G, et al. PEDOT:PSS interfaces support the development of neuronal synaptic networks with reduced neuroglia response in vitro. Front Neurosci. 2015;9:521.
  • Bollen CJ, Güçlü U, Van Wezel RJ, et al. Simulating neuroprosthetic vision for emotion recognition. 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW); 2019. pp. 85–87.
  • Vergnieux V, Macé MJ-M, Jouffrais C. Simplification of visual rendering in simulated prosthetic vision facilitates navigation. Artif Organs. 2017;41(9):852–861.
  • Sanchez-Garcia M, Martinez-Cantin R, Guerrero JJ. Indoor scenes understanding for visual prosthesis with fully convolutional networks. Visigrapp 2019;5:218–225.
  • Lozano A, Suárez JS, Soto-Sánchez C, et al. Neurolight: a deep learning neural interface for cortical visual prostheses. Int J Neur Syst. 2020;30(09):2050045–2050045.
  • Liu Y, Stiles NR, Meister M. Augmented reality powers a cognitive assistant for the blind. ELife. 2018;7(7):e37841.
  • Guo F, Yang Y, Gao Y. Optimization of visual information presentation for visual prosthesis. Int J Biomed Imaging. 2018;2018:3198342.
  • Lozano A, Suárez JS, Soto-Sánchez C, et al. Neurolight alpha: interfacing computational neural models for stimulus modulation in cortical visual neuroprostheses. International Work-Conference on the Interplay Between Natural and Artificial Computation; 2019. pp. 108–119.
  • Fried S, Lee SW. Abstract# 39: Towards a microcoil-based cortical visual prosthesis. Brain Stimul: Basic Transl Clin Res Neuromodul. 2019;12(2):e14.
  • Lee SW, Fallegger F, Casse BD, et al. Implantable microcoils for intracortical magnetic stimulation. Sci Adv. 2016;2(12):e1600889.
  • Kammer T. Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship. Neuropsychologia. 1998;37(2):191–198.
  • Marg E, Rudiak D. Phosphenes induced by magnetic stimulation over the occipital brain: description and probable site of stimulation. Optomet Vis Sci. 1994;71(5):301–311.
  • Farnum A, Pelled G. New vision for visual prostheses. Front Neurosci. 2020;14:36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.