1,366
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Influence of wearing masks on exhaled air aerodynamics

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 231-242 | Received 13 Oct 2021, Accepted 04 Jan 2022, Published online: 18 Feb 2022

References

  • REGULATION (EU). 2016/425 of the European parliament and of the council of 9 march 2016 on personal protective equipment and repealing council directive 89/686/EEC. Official Journal of the European Union L. 2016.
  • DIN EN 149. Respiratory protective devices – Filtering half masks to protect against particles – Requirements, testing, marking (includes Amendment A1:2009) English version of DIN EN 149. 2009. 08. DIN Deutsches Institut für Normung e.V., Berlin. Beuth Verlag GmbH, 10772 Berlin, Germany.
  • DIN EN 140. Respiratory protective devices – Half masks and quarter-masks – Requirements, testing, marking; English version of DIN EN 140. 1998. 12. DIN Deutsches Institut für Normung e.V., Berlin. Beuth Verlag GmbH, 10772 Berlin, Germany.
  • DIN EN 143. Respiratory protective devices – Particle filters – Requirements, testing, marking; English version of DIN EN 143. 2017. 08 - Draft. DIN Deutsches Institut für Normung e.V., Berlin. Beuth Verlag GmbH, 10772 Berlin, Germany.
  • Office of the Federal Register. Code of federal regulations: part 84 - approval of respiratory protective devices. Washington, DC: Office of the Federal Register, National Archives and Records Administration, 1996. (42 CFR part 84).
  • 42 CFR Part 84 Respiratory Protective Devices. Government Printing Office in Washington, DC. 1995. Federal Register 08.06.1995 Part II. Final rule effective on 10.07.1995.
  • 42 CFR Part 84 - Approval of Respiratory Protective Devices. United States Government Publishing Office. 2020. www.ecfr.gov [Retrieved 9 Feb 2020].
  • NIOSH Guide to the Selection and Use of Particulate Respirators. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 96-101, 1996.
  • NIOSH Guide to the Selection and Use of Particulate Respirators. The National Institute for Occupational Safety and Health (NIOSH). Centers for Disease Control and Prevention. 6 June 2014. [January 1996]. [Retrieved 9 Feb 2020].
  • GB 2626-2019. National Standard of the People’s Republic of China. ICS 13.340.30, C 73. Replacing GB 2626-2006. Respiratory protection – Non-powered air-purifing particle respirator. State Administration for Market Regulation; Standardization Administration of PRC. 2019.
  • DIN EN 14683. Medical face masks - Requirements and test methods; English version EN 14683:2019 + AC. 2019. English translation of DIN EN 14683:2019-10. DIN Deutsches Institut für Normung e.V., Berlin. Beuth Verlag GmbH, 10772 Berlin, Germany.
  • Cohen J, Rodgers Y. V D M. Contributing factors to personal protective equipment shortages during the COVID-19 pandemic. Prev Med. 2020;141:106263doi.org/10.1016/j.ypmed.2020.106263.
  • Maurer L, Peris D, Kerl J, et al. Community masks during the SARS-CoV-2 pandemic: Filtration efficacy and air resistance. J Aerosol Med Pulm Drug Deliv. 2021;34(0):1–9.
  • National Institute for Occupational Safety and Hygiene (NIOSH), NIOSH Guide to the Selection and Use of Particulate Respirators Certified Under 42 CFR 84, DHHS (NIOSH) Publication no. 96-101, National Institute for Occupational Safety and Hygiene (NIOSH), Cincinnati, Ohio, USA, 1996.
  • Balazy A, Toivola M, Reponen T, et al. Manikin-based performance evaluation of N95 filtering-facepiece respirators challenged with nanoparticles. Ann Occup Hyg. 2006;50(3):259–269.
  • Rengasamy S, Eimer BC, Shaffer RE. Comparison of nanoparticle filtration performance of NIOSH-approved and CE-Marked particulate filtering facepiece respirators. Ann Occup Hyg. 2009;53(2):117–128.
  • Lee SA, Hwang DC, Li HY, et al. Particle Size-Selective assessment of protection of european standard FFP respirators and surgical masks against Particles-Tested with human subjects. J Healthcare Eng. 2016; 2016:1–12.
  • Lee SA, Grinshpun SA, Reponen T. Respiratory performance offered by N95 respirators and surgical masks: human subject evaluation with NaCl aerosol representing bacterial and viral particle size range. Ann Occup Hyg. 2008;52(3):177–185.
  • Lee SA, Adhikari A, Grinshpun SA, et al. Respiratory protection provided by N95 filtering facepiece respirators against airborne dust and microorganisms in agricultural farms. Journal of Occup Environ Hygiene. 2005;2(11):577–585.
  • Lee SA, Grinshpun SA, Adhikari A, et al. Laboratory and field evaluation of a new personal sampling system for assessing the protection provided by the N95 filtering facepiece respirators against particles. Ann Occup Hyg. 2005;49(3):245–257.
  • Leung NHL, Chu DKW, Shiu EYC, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med. 2020;26(5):676–680.
  • Xu C, Nielsen PV, Liu L, et al. Human exhalation characterization with the aid of schlieren imaging technique. Build Environ. 2017;112:190–199.
  • Tang JW, Noakes CJ, Nielsen PV, et al. Observing and quantifying airflows in the infection control of aerosol- and airborne-transmitted diseases: an overview of approaches. J Hosp Infect. 2011;77(3):213–222.
  • Tang JW, Liebner TJ, Craven BA, et al. A schlieren optical study of the human cough with and without wearing masks for aerosol infection control. J R Soc Interface. 2009;6:S727–S736.
  • Tang JW, Nicolle ADG, Pantelic J, et al. Qualitative real-time schlieren and shadowgraph imaging of human exhaled airflows: an aid to aerosol infection control. PLoS One. 2011;6/(6):e21392.
  • Dellweg D, Kerl J, Gena AW, et al. Exhalation spreading during nasal high-flow therapy at different flow rates. Crit Care Med. 2021;49(7):e693–e700.
  • Tang JW, Nicolle ADG, Pantelic J, et al. Airflow dynamics of coughing in healthy human volunteers by shadowgraph imaging: an aid to aerosol infection control. PLoS One. 2012;7/(4):e34818.
  • Alsaad H, Voelker C. Qualitative evaluation of the flow supplied by personalized ventilation using schlieren imaging and thermography. Build Environ. 2020;167:106450.
  • Gena AW, Voelker C, Settles GS. Qualitative and quantitative schlieren optical measurement of the human thermal plume. Indoor Air. 2020;30(4):757–766.
  • Dellweg D, Haidl P, Kerl J, et al. Bench testing of noninvasive ventilation masks with viral filters for the protection from inhalation of infectious respirable particles. J Occup Environ Hyg. 2021;18(3):118–127.
  • Voelker C, Alsaad H. Simulating the human body's microclimate using automatic coupling of CFD and an advanced thermoregulation model. Indoor Air. 2018;28(3):415–425.
  • Lin K, Marr LC. Humidity-dependent decay of viruses, but not bacteria, in aerosols and droplets follows disinfection kinetics. Environ Sci Technol. 2020;54(2):1024–1032.
  • De Santis R, Luca V, Faggioni G, et al. Rapid inactivation of SARS-CoV-2 with LED irradiation of visible spectrum wavelengths. J Photochem Photobiol. 2021;8:100082. DOI:10.1016/j.jpap.2021.100082.
  • Rabenau HF, Cinatl J, Morgenstern B, et al. Stability and inactivation of SARS coronavirus. Med Microbiol Immunol. 2005;194(1-2):1–6.
  • Kähler CJ, Hain R. Flow analyzes for the SARS-CoV-2 protective mask debate (german: Strömungsanalysen zur SARS-CoV-2 Schutzmaskendebatte). 2020. Universität der Bundeswehr München, Institut für Strömungsmechanik und Aerodynamik, Werner-Heisenberg-Weg 39, 85577 Neubiberg.