313
Views
4
CrossRef citations to date
0
Altmetric
Reviews

A review on femoropopliteal arterial deformation during daily lives and nickel-titanium stent properties

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 300-317 | Received 20 Aug 2021, Accepted 07 Feb 2022, Published online: 02 Mar 2022

References

  • Allie DE, Hebert CJ, Walker CM. Nitinol stent fractures in the SFA: the biomechanical forces exerted on the SFA provide a ‘stiff’ challenge to endovascular stenting. Endovas Today. 2004;6:22–34.
  • Laird JR, Katzen BT, Scheinert D, et al. Nitinol stent implantation versus balloon angioplasty for lesions in the superficial femoral artery and proximal popliteal artery: Twelve-month results from the RESILIENT randomized trial. Circ Cardiovasc Intervent. 2010;3(3):267–276.
  • Müller-Hülsbeck S, Schäfer PJ, Charalambous N, et al. Comparison of second-generation stents for application in the superficial femoral artery: an in vitro evaluation focusing on stent design. J Endovasc Ther. 2010;17(6):767–776.
  • Cheng CP, Choi G, Herfkens RJ, et al. The effect of aging on deformations of the superficial femoral artery resulting from hip and knee flexion: potential clinical implications. J Vasc Interv Radiol. 2010;21(2):195–202.
  • Poulson W, Kamenskiy A, Seas A, et al. Limb flexion-induced axial compression and bending in human femoropopliteal artery segments. J Vasc Surg. 2018;67(2):607–613.
  • Desyatova A, Poulson W, Deegan P, et al. Limb flexion-induced twist and associated intramural stresses in the human femoropopliteal artery. JR Soc Interface. 2017;14(128):20170025.
  • Dottori S, Flamini V, Vairo G. Mechanical behavior of peripheral stents and stent-vessel interaction: a computational study. Int J Comput Methods Eng Sci Mech. 2016;17(3):196–210.
  • Häggström M. Subsartorial vessels as replacement names for superficial femoral vessels. Int J Anatomy Radiol Surg. 2019;8(1):10–11.
  • Levy PJ. Epidemiology and pathophysiology of peripheral arterial disease. Clin Cornerstone. 2002;4(5):1–13.
  • Cimminiello C. PAD - epidemiology and pathophysiology. Thromb Res. 2002;106(6):V295–V301.
  • Neto MFD. New insights into epidemiology and pathophysiology of abdominal aortic aneurysms. Cardiovascular sciences at the faculty of medicine. Portugal: University of Porto; 2020.
  • Akalu Y, Birhan A. Peripheral arterial disease and its associated factors among type 2 diabetes mellitus patients at debre tabor general hospital, northwest Ethiopia. J. Diabetes Res. 2020;2020:1–9.
  • MacTaggart JN, Phillips NY, Lomneth CS, et al. Three-dimensional bending, torsion and axial compression of the femoropopliteal artery during limb flexion. J Biomech. 2014;47(10):2249–2256.
  • Desyatova A, Mactaggart J, Romarowski R, et al. Effect of aging on mechanical stresses, deformations, and hemodynamics in human femoropopliteal artery due to limb flexion. Biomech Model Mechanobiol. 2018;17(1):181–189.
  • Ansari F, Pack LK, Brooks SS, et al. Design considerations for studies of the biomechanical environment of the femoropopliteal arteries. J Vasc Surg. 2013;58(3):804–813.
  • Bartholomew JR, Olin JW. Pathophysiology of peripheral arterial disease and risk factors for its development. Cleve Clin J Med. 2006;73:S8–14.
  • Y M. In situ longitudinal pre-stretch in the human femoropopliteal artery. Physiol Behav. 2016;176(1):139–148.
  • Kamenskiy A, Poulson W, Sim S, et al. Prevalence of calcification in human femoropopliteal arteries and its association with demographics, risk factors, and arterial stiffness. Arterioscler Thromb Vasc Biol. 2018;38(4):e48–e57.
  • Price PA, Faus SA, Williamson MK. Warfarin-Induced artery calcification is accelerated by growth and vitamin D. Arterioscler Thromb Vasc Biol. 2000;20(2):317–327.
  • Irwin CL, Guzman RJ. Matrix metalloproteinases in medial arterial calcification: Potential mechanisms and actions. Vascular. 2009;17(1):40–44.
  • Desyatova A, MacTaggart J, Kamenskiy A. Constitutive modeling of human femoropopliteal artery biaxial stiffening due to aging and diabetes. Acta Biomater. 2017;64:50–58.
  • Lakhani CM, Tierney BT, Manrai AK, et al. Association of cardiovascular and biochemical risk factors with tibial artery calcification. Physiol Behav. 2019;176(3):139–148.
  • Qin X, Corriere MA, Matrisian LM, et al. Matrix metalloproteinase inhibition attenuates aortic calcification. Arterioscler Thromb Vasc Biol. 2006;26(7):1510–1516.
  • Guzman RJ. Clinical, cellular, and molecular aspects of arterial calcification. J Vasc Surg. 2007;45(6):A57–A63.
  • Folkman J. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1971;18:1182–1186.
  • Humphrey JD. Vascular adaptation and mechanical homeostasis at tissue, cellular, and Sub-cellular levels. Cell Biochem Biophys. 2008;50(2):53–78.
  • Humphrey JD, Eberth JF, Dye WW, et al. Fundamental role of axial stress in compensatory adaptations by arteries. J Biomech. 2009;42(1):1–8.
  • Kareem AK, Fakhri OM, Ismail AE, et al. Mechanisms and treatment of Femoropoplitealin-Stent restenosis. Test Eng Manag. 2019;81:704–718.
  • Goodney PP, Beck AW, Nagle J, et al. National trends in lower extremity bypass surgery, endovascular interventions, and major amputations. J Vasc Surg. 2009;50(1):54–60.
  • Schillinger M, Sabeti S, Dick P, et al. Sustained benefit at 2 years of primary femoropopliteal stenting compared with balloon angioplasty with optional stenting. Circulation. 2007;115(21):2745–2749.
  • Conte MS, Bandyk DF, Clowes AW, et al. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J Vasc Surg. 2006;43(4):742–752.
  • Adam DJ, Beard JD, Cleveland T, et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet. 2005;366(9501):1925–1934.
  • Sacks FM, Harris A, Sc M, et al. New England journal CREST. Science. 2009;360:609–619.
  • Miki K, Tanaka T, Yanaka K, et al. Influence of self-expanding paclitaxel-eluting stent sizing on neointimal hyperplasia in superficial femoral artery lesions. Circ J. 2020;84(10):1854–1861.
  • Mwipatayi BP, Hockings A, Hofmann M, et al. Balloon angioplasty compared with stenting for treatment of femoropopliteal occlusive disease: a Meta-analysis. J Vasc Surg. 2008;47(2):461–469.
  • Rundback JH, Chaim Herman K, Patel A. Superficial femoral artery intervention: creating an algorithmic approach for the use of old and novel (endovascular) technologies. Curr Treat Options Cardiovasc Med. 2015;17(9):1–18.
  • Bosiers S, Peeters Tessarek M, Deloose J, et al. Zilver PTx trial. J Cardiovasc Surg. 2013;54(6):679–684.
  • Stone PA, Campbell JE, Fischer R, et al. Early results with LifeStent implantation in RESILIENT and non-RESILIENT inclusion criteria patients. Vascular. 2015;23(3):225–233.
  • Mohr PJ, Oyama JK, Luu JT, et al. Clinical outcomes of endovascular treatment of TASC-II C and D femoropopliteal lesions with the Viabahn endoprosthesis. Cardiovasc Revasc Med. 2015;16(8):465–468.
  • Böhme T, Noory E, Brechtel K, et al. Heparin-bonded stent-graft for the treatment of TASC II C and D femoropopliteal lesions: 36-Month results of the Viabahn 25 cm trial. J Endovasc Ther. 2020;28:222–228.
  • Laird JR, Jain A, Zeller T, et al. Nitinol stent implantation in the superficial femoral artery and proximal popliteal artery: twelve-Month results from the complete SE multicenter trial. J Endovasc Ther. 2014;21(2):202–212.
  • Powell RJ, Jaff MR, Schroë H, et al. Stent placement in the superficial femoral and proximal popliteal arteries with the Innova self-expanding bare metal stent system. Catheter Cardiovasc Interv. 2017;89(6):1069–1077.
  • Gray WA, Feiring A, Cioppi M, et al. S.M.A.R.T. self-expanding nitinol stent for the treatment of atherosclerotic lesions in the superficial femoral artery (STROLL): 1-year outcomes. J Vasc Interv Radiol. 2015;26(1):21–28.
  • Montero-Baker M, Ziomek GJ, Leon L, et al. Analysis of endovascular therapy for femoropopliteal disease with the supera stent. J Vasc Surg. 2016;64(4):1002–1008.
  • Ohki T, Angle JF, Yokoi H, et al. One-year outcomes of the U.S. and Japanese regulatory trial of the misago stent for treatment of superficial femoral artery disease (OSPREY study). J Vasc Surg. 2016;63(2):370–376. e1.
  • Sibé M, Kaladji A, Boirat C, et al. French multicenter experience with the GORE TIGRIS vascular stent in superficial femoral and popliteal arteries. J Vasc Surg. 2017;65(5):1329–1335.
  • Deloose K, Bosiers M, Callaert J, et al. BRAVISSIMO: 12-month results from a large-scale prospective trial. YMVA. 2012;56(3):888.
  • Garriboli L, Calabria OSC. Italian single-center experiences with S.M.A.R.T. Flex. Endovascular Today Europe.2016;4:73–75.
  • Diehl SJ, Gerblich F, Jochum S, et al. Twelve-month results of the everflex stent in the superficial femoral artery. J Vasc Interv Radiol. 2012;23(10):1317–1322.
  • Darling JD, McCallum JC, Soden PA, et al. Results for primary bypass versus primary angioplasty/stent for lower extremity chronic limb-threatening ischemia. J Vasc Surg. 2005;66:466–475.
  • Chang C, Lin J, Hsu J, et al. Stent revascularization versus bypass surgery for peripheral artery disease in type 2 diabetic patients – an instrumental variable analysis. Sci Rep. 2016;6:37177.
  • Schlager O, Dick P, Sabeti S, et al. Long-Segment SFA stenting—the dark sides: in-Stent restenosis, clinical deterioration, and stent fractures. J Endovasc Ther. 2005;12(6):676–684.
  • Laird JR, Yeo KK. The treatment of femoropopliteal in-stent restenosis: back to the future. J Am Coll Cardiol. 2012;59(1):24–25.
  • Bob SH, Nikanorov A, LaFlash D, et al. Biomechanical forces in the femoropopliteal arterial segment. Endovasc Today. 2005;(4):60–66.
  • Cheng CP, Wilson NM, Hallett RL, et al. In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. J Vasc Interv Radiol. 2006;17(6):979–987.
  • Klein AJ, Casserly IP, Messenger JC, et al. In vivo 3D modeling of the femoropopliteal artery in human subjects based on x-ray angiography: methodology and validation. Med Phys. 2009;36(2):289–310.
  • Nikanorov A, Smouse HB, Osman K, et al. Fracture of self-expanding nitinol stents stressed in vitro under simulated intravascular conditions. J Vasc Surg. 2008;48(2):435–440.
  • Gökgöl C, Schumann S, Diehm N, et al. In vivo quantification of the deformations of the femoropopliteal segment: percutaneous transluminal angioplasty vs. nitinol stent placement. J Endovasc Ther. 2017;24(1):27–34.
  • Ganguly A, Simons J, Schneider A, et al. In-vivo imaging of femoral artery nitinol stents for deformation analysis. J Vasc Interv Radiol. 2011;22(2):244–249.
  • MacTaggart J, Poulson W, Seas A, et al. Stent design affects femoropopliteal artery deformation. Ann Surg. 2019;270(1):180–187.
  • Ní Ghriallais R, Heraty K, Smouse B, et al. Deformation of the femoropopliteal segment: effect of stent length, location, flexibility, and curvature. J Endovasc Ther. 2016;23(6):907–918.
  • Werner BYM. Factors affecting reduction in SFA stent fracture rates. Endovasc Today. 2014;13(10):93–95.
  • Kurayev A, Zavlunova S, Babaev A. CRT-207 role of nitinol stent fractures in the development of in-Stent restenosis in the superficial femoral artery. JACC Cardiovasc Interv. 2014;7(2):S35.
  • Scheinert D, Scheinert S, Sax J, et al. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J Am Coll Cardiol. 2005;45(2):312–315.
  • Laird JR, Katzen BT, Scheinert D, et al. Nitinol stent implantation vs. balloon angioplasty for lesions in the superficial femoral and proximal popliteal arteries of patients with claudication: three-year follow-up from the resilient randomized trial. J Endovasc Ther. 2012;19(1):1–9.
  • Nakazawa G, Finn AV, Vorpahl M, et al. Incidence and predictors of Drug-Eluting stent fracture in human coronary artery. A pathologic analysis. J Am Coll Cardiol. 2009;54(21):1924–1931.
  • Adlakha S, Sheikh M, Wu J, et al. Stent fracture in the coronary and peripheral arteries. J Interv Cardiol. 2010;23(4):411–419.
  • Kim HT, Cho JH, Lee JH, et al. Early supera stent fracture in the femoropopliteal artery. Cardiovasc J Afr. 2020;31(3):E1–E3.
  • Daher MDA, Lopez GE, Duarte PV. Stents in the femoropopliteal territory: prevalence of fractures and their consequences. Rev Col Bras Cir. 2020;47:e20202481.
  • Ishihara T, Inoue K, Iida O, et al. Pathological evaluation 18 years after bare-metal stent implantation in the superficial femoral artery. J Cardiol Cases. 2020;23:4–7.
  • Nakamura N, Torii S, Tsuchiya H, et al. Formation of calcified nodule as a cause of early in-Stent restenosis in patients undergoing dialysis. J Am Heart Assoc. 2020;9(19):e016595.
  • Werner M, Schmidt A, Scheinert S, et al. Evaluation of the biodegradable Igaki-Tamai scaffold after drug-eluting balloon treatment of de novo superficial femoral artery lesions: the GAIA-DEB study. J Endovasc Ther. 2016;23(1):92–97.
  • Sharma U, Concagh D, Core L, et al. The development of bioresorbable composite polymeric implants with high mechanical strength. Nat Mater. 2018;17(1):96–102.
  • Werner M, Micari A, Cioppa A, et al. Evaluation of the biodegradable peripheral Igaki-Tamai stent in the treatment of de novo lesions in the superficial femoral artery: the GAIA study. JACC Cardiovasc Interv. 2014;7(3):305–312.
  • Qi Y, Qi H, He Y, et al. Strategy of Metal-Polymer composite stent to accelerate biodegradation of Iron-Based biomaterials. ACS Appl Mater Interfaces. 2018;10(1):182–192.
  • Schillinger M, Minar E. Past, present and future of femoropopliteal stenting. J Endovasc Ther. 2009;16(1):147–152.
  • Robertson SW, Pelton AR, Ritchie RO. Mechanical fatigue and fracture of nitinol. Int Mater Rev. 2012;57(1):1–36.
  • Barras CDJ, Myers KA. Nitinol - Its use in vascular surgery and other applications. Eur J Vasc Endovasc Surg. 2000;19(6):564–569.
  • Unterweger E, Bruncko M, Mehrabi K, et al. Microstructure and properties of niti and cualni shape memory alloys. Metalurgija. 2008;14(2):89–100.
  • Elahinia MH, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: a review. Prog Mater Sci. 2012;57(5):911–946.
  • Pelton AR, Schroeder V, Mitchell MR, et al. Fatigue and durability of nitinol stents. J Mech Behav Biomed Mater. 2008;1(2):153–164.
  • Zafar MS, Najeeb S, Khurshid Z, et al. Properties of dental biomaterials. Advanced dental biomaterials. Amsterdam, Netherlands: Elsevier Ltd; 2019.
  • Ryhanen J. Biocompatibility of nitinol. Minim Invasive Ther Allied Technol. 2000;9(2):99–105.
  • Stoeckel D. Nitinol medical devices and implants. Minim Invasive Ther Allied Technol. 2000;9(2):81–88.
  • Maleckis K, Deegan P, Poulson W, et al. Comparison of femoropopliteal artery stents under axial and radial compression, axial tension, bending, and torsion deformations. J Mech Behav Biomed Mater. 2017;75:160–168.
  • Zaccaria A, Migliavacca F, Pennati G, et al. Modeling of braided stents: comparison of geometry reconstruction and contact strategies. J Biomech. 2020;107:109841.
  • Duerig TW, Tolomeo DE, Wholey M, et al. An overview of superelastic stent design an overview of superelastic stent design.2000;9(3–4):235–246. .
  • Stoeckel D, Pelton A, Duerig T. Self-expanding nitinol stents for the treatment of vascular disease. Shape Mem Alloy Biomed Appl. 2008;(14):237–256.
  • Food and Drug Administration. Guidance for industry and FDA staff Non-Clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems and human services food and drug administration center for devices and radiological health interventional. U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health. Vol. 1545. 2015.
  • Wang PJ, Berti F, Antonini L, et al. Multimodal loading environment predicts bioresorbable vascular scaffolds’ durability. Ann Biomed Eng. 2020;49:1298–1307.
  • Park J, Kwak HS, Kim JW. Bench-Top comparison of three different types of stents used for treatment of intracranial atherosclerotic stenosis. Neurointervention. 2020;15(3):117–125.
  • Favier D, Liu Y, Orgéas L, et al. Influence of thermomechanical processing on the superelastic properties of a Ni-rich nitinol shape memory alloy. Mater Sci Eng A. 2006;429(1–2):130–136.
  • I. W. L. Gore & Associates. Mechanical properties of nitinol stents and stent-grafts: comparison of 6mm diameter devices. Newark (DE): W. L. Gore Associates; 2007; p. 1–11.
  • Dyet JF, Watts WG, Ettles DF, et al. Mechanical properties of metallic stents: how do these properties influence the choice of stent for specific lesions? Cardiovasc Intervent Radiol. 2000;23(1):47–54.
  • Duda SH, Wiskirchen J, Tepe G, et al. Physical properties of endovascular stents: an experimental comparison. J Vasc Interv Radiol. 2000;11(5):645–654.
  • Stoeckel D, Pelton A, Duerig T. Self-expanding nitinol stents: Material and design considerations. Eur Radiol. 2004;14(2):292–301.
  • Gong XXY, Pelton ARAR, Duerig TWTW, et al. Finite element analysis and experimental evaluation of superelastic Nitinol stent. SMST-2003 Proceedings of the International Conference on Shape Memory and Superelastic Technologies; 2003 May 5–8; Asilomar Conference Center, Pacific Grove (CA). Menlo Park (CA): SMST Society; 2004. p. 453–462.
  • Mazzaccaro D, Berti F, Antonini L, et al. Biomechanical interpretation of observed fatigue fractures of peripheral nitinol stents in the superficial femoral arteries through in silico modelling. Med Hypotheses. 2020;142:109771.
  • Berti F, Wang PJ, Spagnoli A, et al. Nickel–titanium peripheral stents: which is the best criterion for the multi-axial fatigue strength assessment? J Mech Behav Biomed Mater. 2021;113:104142.
  • Kossa A, McMeeking RM. Bending of a nitinol cantilever and its fatigue performance. Extrem. Mech. Lett. 2021;42:101083.
  • Robertson SW, Ritchie RO, Gong XY, et al. Ultrahigh-resolution in situ diffraction characterization of the local mechanics at a growing crack tip in Nitinol. Proceedings of the International Conference on Shape Memory and Superelastic Technology; 2006 May 7–11; Pacific Grove (CA). California. USA. 2008.
  • Li M, Mondrinos MJ, Chen X, et al. Fatigue-crack growth properties of thin-walled superelastic austenitic nitinol tube for endovascular stents. J Biomed Mater Res Part A. 2006;79(4):963–973.
  • Devices N. Effect of product form and heat treatment on the crystallographic texture of austenitic nitinol. J Mater Sci. 2006;1:621–630.
  • Mahtabi MJ, Shamsaei N, Mitchell MR. Fatigue of nitinol: the state-of-the-art and ongoing challenges. J Mech Behav Biomed Mater. 2015;50:228–254.
  • Mahtabi MJ, Shamsaei N. Multiaxial fatigue modeling for nitinol shape memory alloys under in-phase loading. J Mech Behav Biomed Mater. 2015;55:236–249.
  • Lim YH, Jeong HY. Finite element analyses for improved design of peripheral stents. Comput Methods Biomech Biomed Engin. 2017;20(6):653–662.
  • Kamenskiy AV, Pipinos II, Dzenis YA, et al. Effects of age on the physiological and mechanical characteristics of human femoropopliteal arteries. Acta Biomater. 2015;11(1):304–313.
  • Kamenskiy A, Seas A, Bowen G, et al. In situ longitudinal pre-stretch in the human femoropopliteal artery. Acta Biomater. 2016;32:231–237.
  • Kamenskiy AV, Pipinos II, Dzenis YA, et al. Passive biaxial mechanical properties and in vivo axial pre-stretch of the diseased human femoropopliteal and tibial arteries. Acta Biomater. 2014;10(3):1301–1313.
  • Kamenskiy A, Seas A, Deegan P, et al. Constitutive description of human femoropopliteal artery aging. Biomech Model Mechanobiol. 2017;16(2):681–692.
  • Brinson LC, Lammering R. Finite element analysis of the behavior of shape memory alloys and their applications. Int. J. Solids Struct. 1993;30(23):3261–3280.
  • Sun QP, Hwang KC. Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys-I. Derivation of general relations. J Mech Phys Solids. 1993;41(1):1–17.
  • Cisse C, Zaki W, Ben Zineb T. A review of constitutive models and modeling techniques for shape memory alloys. Int J Plast. 2016;76:244–284.
  • Whitcher FD. Simulation of in vivo loading conditions of nitinol vascular stent structures. Comput Struct. 1997;64(5–6):1005–1011.
  • Masoumi Khalil Abad E, Pasini D, Cecere R. Shape optimization of stress concentration-free lattice for self-expandable nitinol stent-grafts. J Biomech. 2012;45(6):1028–1035.
  • Azaouzi M, Lebaal N, Makradi A, et al. Optimization based simulation of self-expanding nitinol stent. Mater Des. 2013;50:917–928.
  • Alaimo G, Auricchio F, Conti M, et al. Multi-objective optimization of nitinol stent design. Med Eng Phys. 2017;47:13–24.
  • Desyatova A, Poulson W, MacTaggart J, et al. Cross-sectional pinching in human femoropopliteal arteries due to limb flexion, and stent design optimization for maximum cross-sectional opening and minimum intramural stresses. J R Soc Interface. 2018;15(145):10–14.
  • Nikolić D. Parametric optimization of stent design based on numerical methods. IFMBE Proc C. 2020;73:159–163.
  • C. L P. Introduction to nitinol. Vol. 62. Bethel (CT): Memory Corporation; 2017.
  • Khalil HF. Changes in the mechanical behavior of nitinol following variations of heat treatment duration and temperature [thesis]. Atlanta (GA): Georgia Institute of Technology; 2009; p. 49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.