335
Views
5
CrossRef citations to date
0
Altmetric
Reviews

A review of wound dressing materials and its fabrication methods: emphasis on three-dimensional printed dressings

, , &
Pages 318-334 | Received 31 Jan 2022, Accepted 08 Feb 2022, Published online: 25 Feb 2022

References

  • Leaper DJ, Harding KG, editors. Wounds: biology and management. Oxford: Oxford Medical Publications, 1998.
  • Enoch S, Leaper DJ. Basic science of wound healing. Surgery (Oxford). 2008;26(2):31–37.
  • Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37(5):1528–1542.
  • Dhivya S, Vijaya Padma V, Santhini E. Wound dressings–a review. BioMed. 2015;5(4):22.
  • Whitney JD. Overview: acute and chronic wounds. Nurs Clin North Am. 2005;40(2):191–205.
  • Guo SA, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–229.
  • Liman ST. Chest injury due to blunt trauma. Eur J Cardiothorac Surg. 2003;23(3):374–378.
  • Pretre R, Chilcott M. Blunt trauma to the heart and great vessels. N Engl J Med. 1997;336(9):626–632.
  • Phillips SJ. Physiology of wound healing and surgical wound care. ASAIO J Artif Organ Res Dev. 2000;46:S2–S5.
  • Nagachinta T, Stephens M, Reitz B, et al. Risk factors for surgical-wound infection following cardiac surgery. J Infect Dis. 1987;156(6):967–973.
  • Nichols RL. Surgical wound infection. Am J Med. 1991;91(3):S54–S64.
  • Tiwari VK. Burn wound: how it differs from other wounds? Indian J Plast Surg. 2012;45(2):364–373.
  • Visha MG, Karunagaran M. A review on wound healing. Int J Clinicopathol Correl. 2019;3(2):50.
  • Azmat CE, Council M. Wound closure techniques. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2021. PMID: 29262163.
  • Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35–43.
  • Vyas KS, Vasconez HC. Wound healing: biologics, skin substitutes, biomembranes and scaffolds. Healthcare (Basel). 2014;2(3):356–400.
  • Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, et al. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif Cells Nanomed Biotechnol. 2018;46(4):691–705.
  • Bankoti K, Rameshbabu AP, Datta S, et al. Accelerated healing of full thickness dermal wounds by macroporous waterborne polyurethane-chitosan hydrogel scaffolds. Mater Sci Eng C Mater Biol Appl. 2017;81:133–143.
  • Kamoun EA, Kenawy E-RS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res. 2017;8(3):217–233.
  • Nadhif MH, Assyarify H, Irsyad M, et al. Recent advances in 3D printed wound dressings. AIP Conf Proc. 2021;2344:020021.
  • Negut I, Dorcioman G, Grumezescu V. Scaffolds for wound healing applications. Polymers. 2020;12(9):2010.
  • Chaudhari A, Vig K, Baganizi D, et al. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. IJMS. 2016;17(12):1974.
  • Chaudhary C, Garg T. Scaffolds: a novel carrier and potential wound healer. Crit Rev Ther Drug Carrier Syst. 2015;32:277.
  • Subia B, Kundu J, Kundu SC. Biomaterial scaffold fabrication techniques for potential tissue engineering applications. Tissue Engineering. 2010;141.
  • Shoichet MS. Polymer scaffolds for biomaterials applications. Macromolecules. 2010;43(2):581–591.
  • Aravamudhan A, Ramos D, Nada A, et al. Natural polymers: polysaccharides and their derivatives for biomedical applications. In: Kumbar SG, Laurencin CT, Deng M, editors. Natural and synthetic biomedical polymers. Burlington (MA): Elsevier; 2014. p. 67–89.
  • Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106–126.
  • Afjoul H, Shamloo A, Kamali A. Freeze-gelled alginate/gelatin scaffolds for wound healing applications: an in vitro, in vivo study. Mater Sci Eng C Mater Biol Appl. 2020;113:110957.
  • Rabbany SY, Pastore J, Yamamoto M, et al. Continuous delivery of stromal cell-derived factor-1 from alginate scaffolds accelerates wound healing. Cell Transplant. 2010;19(4):399–408.
  • Cleetus CM, Alvarez Primo F, Fregoso G, et al. Alginate hydrogels with embedded ZnO nanoparticles for wound healing therapy. Int J Nanomedicine. 2020;15:5097–5111.
  • Ehterami A, Salehi M, Farzamfar S, et al. Chitosan/alginate hydrogels containing alpha-tocopherol for wound healing in rat model. J Drug Delivery Sci Technol. 2019;51:204–213.
  • Hafezi F, Scoutaris N, Douroumis D, et al. 3D printed chitosan dressing crosslinked with genipin for potential healing of chronic wounds. Int J Pharm. 2019;560:406–415.
  • Ahmed S, Ikram S. Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci. 2016;10(1):27–37.
  • Gomathysankar S, Sukari Halim A, Yaacob NS. Proliferation of keratinocytes induced by adipose-derived stem cells on a chitosan scaffold and its role in wound healing, a review. Arch Plast Surg. 2014;41(5):452–457.
  • Arash M, et al. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohydr Polym. 2020;233:115839.
  • Sinha M, Banik RM, Haldar C, et al. Development of ciprofloxacin hydrochloride loaded poly (ethylene glycol)/chitosan scaffold as wound dressing. J Porous Mater. 2013;20(4):799–807.
  • Pallavicini P, Arciola CR, Bertoglio F, et al. Silver nanoparticles synthesized and coated with pectin: an ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties. J Colloid Interface Sci. 2017;498:271–281.
  • Martins JG, Camargo SEA, Bishop TT, et al. Pectin-chitosan membrane scaffold imparts controlled stem cell adhesion and proliferation. Carbohydr Polym. 2018;197:47–56.
  • Ninan N, Muthiah M, Park I-K, et al. Wound healing analysis of pectin/carboxymethyl cellulose/microfibrillated cellulose based composite scaffolds. Mater Lett. 2014;132:34–37.
  • Kim SE, Heo DN, Lee JB, et al. Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed Mater. 2009;4(4):044106.
  • Heo DN, Yang DH, Lee JB, et al. Burn-wound healing effect of gelatin/polyurethane nanofiber scaffold containing silver-sulfadiazine. J Biomed Nanotechnol. 2013;9(3):511–515.
  • Chong EJ, Phan TT, Lim IJ, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007;3(3):321–330.
  • Jang H-J, Kim Y-M, Yoo B-Y, et al. Wound-healing effects of human dermal components with gelatin dressing. J Biomater Appl. 2018;32(6):716–724.
  • Dong C, Lv Y. Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers. 2016;8(2):42.
  • Natarajan V, Krithica N, Madhan B, et al. Preparation and properties of tannic acid cross-linked collagen scaffold and its application in wound healing . J Biomed Mater Res B Appl Biomater. 2013;101(4):560–567.
  • Karri VVSR, Kuppusamy G, Talluri SV, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol. 2016;93:1519–1529.
  • Tan Q, Chen B, Yan X, et al. Promotion of diabetic wound healing by collagen scaffold with collagen-binding vascular endothelial growth factor in a diabetic rat model. J Tissue Eng Regen Med. 2014;8(3):195–201.
  • You C, Li Q, Wang X, et al. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci Rep. 2017;7(1):1–11.
  • Li Z-H, Ji S-C, Wang Y-Z, et al. Silk fibroin-based scaffolds for tissue engineering. Front Mater Sci. 2013;7(3):237–247.
  • Lu G, Ding Z, Wei Y, et al. Anisotropic biomimetic silk scaffolds for improved cell migration and healing of skin wounds. ACS Appl Mater Interfaces. 2018;10(51):44314–44323.
  • Selvaraj S, Fathima NN. Fenugreek incorporated silk fibroin nanofibers-a potential antioxidant scaffold for enhanced wound healing. ACS Appl Mater Interfaces. 2017;9(7):5916–5926.
  • Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32(8–9):991–1007.
  • Siritienthong T, Ratanavaraporn J, Aramwit P. Development of ethyl alcohol-precipitated silk sericin/polyvinyl alcohol scaffolds for accelerated healing of full-thickness wounds. Int J Pharm. 2012;439(1–2):175–186.
  • Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering-a review. Carbohydr Polym. 2013;92(2):1262–1279.
  • Su Z, Ma H, Wu Z, et al. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor. Mater Sci Eng C Mater Biol Appl. 2014;44:440–448.
  • Sanad RA-B, Abdel-Bar HM. Chitosan-hyaluronic acid composite sponge scaffold enriched with Andrographolide-loaded lipid nanoparticles for enhanced wound healing. Carbohydr Polym. 2017;173:441–450.
  • Eskandarinia A, Kefayat A, Gharakhloo M, et al. A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities. Int J Biol Macromol. 2020;149:467–476.
  • Sun B, Chen B, Zhao Y, et al. Crosslinking heparin to collagen scaffolds for the delivery of human platelet-derived growth factor. J Biomed Mater Res B Appl Biomater. 2009;91(1):366–372.
  • Zhang L, Ma Y, Pan X, et al. A composite hydrogel of chitosan/heparin/poly (γ-glutamic acid) loaded with superoxide dismutase for wound healing. Carbohydr Polym. 2018;180:168–174.
  • Yoon JJ, Chung HJ, Lee HJ, et al. Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor . J Biomed Mater Res A. 2006;79(4):934–942.
  • Watarai A, Schirmer L, Thönes S, et al. TGFβ functionalized starPEG-heparin hydrogels modulate human dermal fibroblast growth and differentiation. Acta Biomater. 2015;25:65–75.
  • Qiu Y, Qiu L, Cui J, et al. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater Sci Eng C Mater Biol Appl. 2016;59:303–309.
  • Kucińska-Lipka J, Gubanska I, Janik H. Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives. Polym Bull. 2015;72(9):2399–2419.
  • Pal S, Nisi R, Stoppa M, et al. Silver-functionalized bacterial cellulose as antibacterial membrane for wound-healing applications. ACS Omega. 2017;2(7):3632–3639.
  • Abdul Khalil HPS, Adnan AS, Yahya EB, et al. A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers. 2020;12(8):1759.
  • Sung JH, Hwang M-R, Kim JO, et al. Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int J Pharm. 2010;392(1–2):232–240.
  • Jatoi AW, Ogasawara H, Kim IS, et al. Polyvinyl alcohol nanofiber based three phase wound dressings for sustained wound healing applications. Mater Lett. 2019;241:168–171.
  • Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, et al. Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing. Int Wound J. 2014;11(2):215–222.
  • Ahmed R, Tariq M, Ali I, et al. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol. 2018;120(Pt A):385–393.
  • Hwang M-R, Kim JO, Lee JH, et al. Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: gel characterization and in vivo healing evaluation. Aaps Pharmscitech. 2010;11(3):1092–1103.
  • Teo EY, Ong S-Y, Chong MSK, et al. Polycaprolactone-based fused deposition modeled mesh for delivery of antibacterial agents to infected wounds. Biomaterials. 2011;32(1):279–287.
  • Augustine R, Dominic EA, Reju I, et al. Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Adv. 2014;4(47):24777–24785.
  • Bui HT, Chung OH, Dela Cruz J, et al. Fabrication and characterization of electrospun curcumin-loaded polycaprolactone-polyethylene glycol nanofibers for enhanced wound healing. Macromol Res. 2014;22(12):1288–1296.
  • Wang Z, Qian Y, Li L, et al. Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing. J Biomater Appl. 2016;30(6):686–698.
  • Miguel S, Ribeiro M, Coutinho P, et al. Electrospun polycaprolactone/aloe vera_chitosan nanofibrous asymmetric membranes aimed for wound healing applications. Polymers. 2017;9(12):183.
  • Calamak S, Ermis M. In situ silver nanoparticle synthesis on 3D-printed polylactic acid scaffolds for biomedical applications. J Mater Res. 2021;36(1):166–175.
  • Nguyen TTT, Ghosh C, Hwang S-G, et al. Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. J Mater Sci. 2013;48(20):7125–7133.
  • Ren Y, Huang L, Wang Y, et al. Stereocomplexed electrospun nanofibers containing poly (lactic acid) modified quaternized chitosan for wound healing. Carbohydr Polym. 2020;247:116754.
  • Santoro M, Shah SR, Walker JL, et al. Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev. 2016;107:206–212.
  • Chereddy KK, Her C-H, Comune M, et al. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J Control Release. 2014;194:138–147.
  • Chereddy KK, Lopes A, Koussoroplis S, et al. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomedicine. 2015;11(8):1975–1984.
  • Liu S-J, Kau Y-C, Chou C-Y, et al. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. J Membr Sci. 2010;355(1–2):53–59.
  • Lee C-H, Chang S-H, Chen W-J, et al. Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes. J Colloid Interface Sci. 2015;439:88–97.
  • Gorna K, Gogolewski S. Biodegradable porous polyurethane scaffolds for tissue repair and regeneration. J Biomed Mater Res A. 2006;79(1):128–138.
  • Khil M‐S, et al. Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater. 2003;67(2):675–679.
  • Pyun DG, Choi HJ, Yoon HS, et al. Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: Synthesis, characterization, in vitro and in vivo studies. Colloids Surf B Biointerfaces. 2015;135:699–706.
  • Sofi HS, Akram T, Tamboli AH, et al. Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications. Int J Pharm. 2019;569:118590.
  • Hobzova R, Hrib J, Sirc J, et al. Embedding of bacterial cellulose nanofibers within PHEMA hydrogel matrices: Tunable stiffness composites with potential for biomedical applications. J Nanomater . 2018;2018:1–11.
  • Rao SS, Jeyapal SG, Rajiv S. Biodegradable electrospun nanocomposite fibers based on poly (2-hydroxy ethyl methacrylate) and bamboo cellulose. Composites B Eng. 2014;60:43–48.
  • Sun L, Li D, Hemraz UD, et al. Self-assembled rosette nanotubes and poly(2-hydroxyethyl methacrylate) hydrogels promote skin cell functions. J Biomed Mater Res A. 2014;102(10):3446–3451.
  • Teodorescu M, Bercea M. Poly (vinylpyrrolidone)–a versatile polymer for biomedical and beyond medical applications. Polym Plast Technol Eng. 2015;54(9):923–943.
  • Hasan A, Waibhaw G, Tiwari S, et al. Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery application. J Biomed Mater Res A. 2017;105(9):2391–2404.
  • Chinatangkul N, Tubtimsri S, Panchapornpon D, et al. Design and characterisation of electrospun shellac-polyvinylpyrrolidone blended micro/nanofibres loaded with monolaurin for application in wound healing. Int J Pharm. 2019;562:258–270.
  • López-Calderón HD, Avilés-Arnaut H, Galán-Wong LJ, et al. Electrospun polyvinylpyrrolidone-gelatin and cellulose acetate Bi-Layer scaffold loaded with gentamicin as possible wound dressing. Polymers. 2020;12(10):2311.
  • Tsekova PB, Spasova MG, Manolova NE, et al. Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity. Mater Sci Eng C Mater Biol Appl. 2017;73:206–214.
  • Nezhad-Mokhtari P, Ghorbani M, Roshangar L, et al. A review on the construction of hydrogel scaffolds by various chemical techniques for tissue engineering. Eur Polym J. 2019;117:64–76.
  • Ma Z, Kotaki M, Inai R, et al. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 2005;11(1–2):101–109.
  • Deng Y, Kuiper J, eds. Functional 3D tissue engineering scaffolds: materials, technologies, and applications. Cambridge: Woodhead Publications; 2017.
  • Garg T, Singh O, Arora S, et al. Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst. 2012;29(1):1–63.
  • Do A-V, Smith R, Acri TM, et al. 3D printing technologies for 3D scaffold engineering. In: Functional 3D tissue engineering scaffolds. Cambridge: Woodhead Publishing; 2018. p. 203–234.
  • Devi MG, Amutheesan M, Govindhan R, et al. A review of three-dimensional printing for biomedical and tissue engineering applications. TOBIOTJ. 2018;12(1):241–255.
  • Smandri A, Nordin A, Hwei NM, et al. Natural 3D-Printed bioinks for skin regeneration and wound healing: a systematic review. Polymers. 2020;12(8):1782.
  • Vozzi G, Flaim CJ, Bianchi F, et al. Microfabricated PLGA scaffolds: a comparative study for application to tissue engineering. Mater Sci Eng C. 2002;20(1–2):43–47.
  • Mohammad V, et al. Extrusion-based 3D printing technologies for 3D scaffold engineering. In: Functional 3D tissue engineering scaffolds. Cambridge: Woodhead Publishing; 2018. p. 235–254.
  • Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121–6130.
  • Mendoza RA, Hsieh J, Galiano RD. The impact of biofilm formation on wound healing. Wound Heal-Curr Perspect. 2019;10:235–250.
  • Zuo M, Pan N, Liu Q, et al. Three-dimensionally printed polylactic acid/cellulose acetate scaffolds with antimicrobial effect. RSC Adv. 2020;10(5):2952–2958.
  • Muwaffak Z, Goyanes A, Clark V, et al. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm. 2017;527(1–2):161–170.
  • Nun N, Cruz M, Jain T, et al. Thread size and polymer composition of 3D printed and electrospun wound dressings affect wound healing outcomes in an excisional wound rat model. Biomacromolecules. 2020;21(10):4030–4042.
  • Cereceres S, Lan Z, Bryan L, et al. Bactericidal activity of 3D-printed hydrogel dressing loaded with gallium maltolate. APL Bioeng. 2019;3(2):026102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.