100
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Valve interstitial cells under impact load, a mechanobiology study

, &
Pages 54-66 | Received 23 Jun 2021, Accepted 28 Jun 2022, Published online: 20 Jul 2022

References

  • Goode D, Mohammadi S, Taheri R, et al. New synthetic mitral valve model for human prolapsed mitral valve reconstructive surgery for training by simulation. J Med Eng Technol. 2020;44(3):133–138.
  • Goode D, Dhaliwal R, Mohammadi H. Transcatheter mitral valve replacement: state of the art. J Cardiovasc Eng Technol. 2020;11(3):229–253.
  • Mohammadi H, Goode D, Fradet G, et al. Proposed percutaneous aortic valve prosthesis made of cryogel. Proc Inst Mech Eng H. 2019;233(5):515–524.
  • Jahandardoost M, Ohlmann L, Fradet G, et al. Effect of the heart rate on the hemodynamics of the elliptic St. Jude medical valve; a computational study. J Mech Med Biol. 2018;18(2):1850014.
  • Mohammadi H, Fradet G. Prosthetic aortic heart valves. Cardiovasc Syst. 2017;5(1):2.
  • Mohammadi H, Fradet G. Oval housing for the St. Jude medical bileaflet mechanical heart valve. Proc Inst Mech Eng H. 2017;231:982–986.
  • Miller JD, Weiss RM, Heistad DD. Calcific aortic valve stenosis: methods, models, and mechanisms. Circ Res. 2011;108(11):1392–1412.
  • Butcher JT, Nerem RM. Valvular endothelial cells regulate the phenotype of interstitial cells in co‐culture: effects of steady shear stress. Tissue Eng. 2006;12(4):905–915.
  • Bond WS, Roberts EL, Warnock JN. Evaluation of porcine aortic valve interstitial cell activity using different serum types in two‐ and three‐dimensional culture. Tissue Eng. 2007;13(2):343–349.
  • Akat K, Borggrefe M, Kaden JJ. Aortic valve calcification: basic science to clinical practice. Heart. 2009;95(8):616–662.
  • Rutkovskiy A, Malashicheva A, Sullivan G, et al. Valve interstitial cells: the key to understanding the pathophysiology of heart valve calcification. J Am Heart Assoc. 2017;6(9):e006339.
  • Stewart BF, Siscovick D, Lind BK, et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol. 1997;29(3):630–634.
  • Skjaerpe T, Hegrenaes L, Hatle L. Noninvasive estimation of valve area in patients with aortic stenosis by Doppler ultrasound and two-dimensional echocardiography. Circulation. 1985;72(4):810–818.
  • Boughner DR. Assessment of aortic insufficiency by transcutaneous Doppler ultrasound. Circulation. 1975;52(5):874–879.
  • Roberts WC. Choosing a substitute cardiac valve: type, size, surgeon. Am J Cardiol. 1976;38(5):633–644.
  • Rapoport HS, Connolly JM, Fulmer J, et al. Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate. Biomaterials. 2007;28(4):690–699.
  • Giddens DP, Yoganathan AP, Schoen FJ. Prosthetic cardiac valves. Cardiovasc. Pathol. 1993;2(3):167S–177S.
  • Merryman WD, Engelmayr GC, Liao J, et al. Defining biomechanical endpoints for tissue engineered heart valve leaflets from native leaflet properties. Prog Pediatr Cardiol. 2006;21(2):153–160.
  • Talman EA, Boughner DR. Internal shear properties of fresh porcine aortic valve cusps: implications for normal valve function. J Heart Valve Dis. 1996;5(2):152–159.
  • Chen Y, Schuh CA. Analytical homogenization method for periodic composite materials. Phys Rev B. 2009;79(9):94104.
  • Mohammadi H, Mequanint K, Bahramian F. A Galerkin-type finite element solution for the simulation of mass diffusion in the application of tissue engineering: heterogeneous and nonporous media. Proc Inst Mech Eng H. 2010;224(8):1005–1117.
  • Mohammadi H, Mequanint K, Herzog W. A P-type finite element solution for the simulation of O2 transport in articular cartilage tissue: heterogeneous and porous media. Proc Inst Mech Eng H. 2011;225(10):1003–1014.
  • Park KC, Felippa CA, Rebel G. A simple algorithm for localized construction of non-matching structural interfaces. Int J Numer Meth Eng. 2002;53(9):2117–2142.
  • Lu J, Darmofal DL. Higher-dimensional integration with Gaussian weight for applications in probabilistic design. SIAM J Sci Comput. 2004;26(2):613–624.
  • Lim CT, Zhou EH, Quek ST. Mechanical model for living cell – a review. J Biomech. 2006;39(2):195–216.
  • Mark A, Coughlin F, Stamenovic D. A prestressed cable network model of the adherent cell cytoskeleton. Biophys J. 2003;84(2 Pt 1):1328–1336.
  • Sultan C, Stamenovic D, Ingber DE. A computational tensegrity model predicts dynamic rheological behaviors in living cells. Ann Biomed Eng. 2004;32(4):520–530.
  • Stamenovic D, Ingber DE. Models of cytoskeleton mechanics of adherent cells. Biomech Model Mechanobiol. 2002;1(1):95–108.
  • Ingber DE. Tensegrity. II. How structural networks influence cellular information processing networks. J Cell Sci. 2003;116(Pt 8):1397–1408.
  • Ingber D. Opposing views on tensegrity as a structural framework for understanding cell mechanics. J Appl Physiol (1985). 2000;89(4):1663–1678.
  • Stamenovic D, Liang Z, Chen J, et al. Effect of the cytoskeletal prestress on the mechanical impedance of cultured airway smooth muscle cells. J Appl Physiol (1985). 2002;92(4):1443–1450.
  • Staminovic D, Mijailovich S, Norrelykke I, et al. Cell prestress. II. Contribution of microtubules. J Physiol Cell Physiol. 2002;282:617–624.
  • Ingber D. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol. 1997;59:575–599.
  • Stamenović D, Wang N. Cellular responses to mechanical stress engineering approaches to cytoskeletal mechanics. J Appl Physiol (1985). 2000;89(5):2085–2090.
  • Wang N, Norrelykke IM, Srboljub J, et al. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. J Cell Physiol. 2002;282:606–616.
  • Shafrir Y, Forgacs G. Mechanotransduction through the cytoskeleton. J Physiol Cell Physiol. 2002;282:479–486.
  • Evans E, Yeung A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipette aspiration. Biophys J. 1989;56(1):151–160.
  • Baesu E, Rudd RE, Belak J, et al. Continuum modeling of cell membranes. Int J Non Linear Mech. 2004;39(3):369–377.
  • Mills JP, Qie L, Dao M, et al. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech Chem Biosyst. 2004;1(3):169–180.
  • Kamm RD, McVittie AK, Bathe M. On the role of continuum models in mechanobiology. ASME International Congress-Mechanics in Biology; 2000. p. 242–248.
  • Karcher H, Lammerding J, Huang H, et al. A three-dimensional viscoelastic model for cell deformation with experimental verification. Biophys J. 2003;85(5):3336–3349.
  • Raustin R, Mohammadi H. Towards multiscale modeling of wave propagation in arteries. J Mech Med Biol. 2016;16(3):1650027.
  • Koike N, Takeyoshi I, Ohki S, et al. The effect of short-term coronary perfusion using a perfusion apparatus on canine heart transplantation from non-heart-beating donors. J Heart Lung Transplant. 2003;22(7):810–817.
  • Talman EA, Boughner DR. Effect of altered hydration on the internal shear properties of porcine aortic valve cusps. Ann Thorac Surg. 2001;71(5 Suppl.):S375–S378.
  • Wu JZ, Herzog W. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests. Ann Biomed Eng. 2000;28(3):318–330.
  • Mohammadi H, Mequanint K, Herzog W. Micro-finite element modeling of wrinkle formation for cell locomotion applications. J Mech Med Biol. 2013;13(1):1350019.
  • Colicos M, Dash P. Apoptotic morphology of dentate gyrus granule cells following experimental cortical impact injury in rats: possible role in spatial memory deficits. Brain Res. 1996;739(1–2):120–131.
  • Colicos M, Dash P, Dixon C. Delayed, selective neuronal death following experimental cortical injury in rats: possible role in memory deficits. Brain Res. 1996;739(1–2):111–119.
  • Massimo C, Rogers KA, Boughner DR. Aortic valve interstitial cells: an evaluation of cell viability and cell phenotype over time. J Heart Valve Dis. 2002;11(6):881–887.
  • Negoescu A, Guillermet C, Lorimier P, et al. Importance of DNA fragmentation in apoptosis with regard to TUNEL specificity. Biomed Pharmacother. 1998;52(6):252–258.
  • Steinmeyer J, Ackermann B, Raiss RX. Intermittent cyclic loading of cartilage explants modulates fibronectin metabolism. Osteoarthritis Cartilage. 1997;5(5):331–341.
  • Jahandardoost M, Fradet G, Mohammadi H. Hemodynamic study of the elliptic St. Jude medical valve; a computational study. Proc Inst Mech Eng H. 2016;230(2):85–96.
  • Jahandardoost M, Fradet G, Mohammadi H. Effect of heart rate in the hemodynamics of bileaflet mechanical heart valve prostheses in the opening phase. Proc Inst Mech Eng H. 2016;230(2):1–16.
  • Mohammadi H, Bahramian F, Wan WK. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method. Med Eng Phys. 2009;31(9):1110–1117.
  • Mohammadi H, Wan WK. A novel numerical corrective technique to mass spring systems. Int J Comput Vis Biomech. 2009;2(1):81–85.
  • Mohammadi H, Boughner D, Millon LE, et al. Design and simulation of a poly(vinyl alcohol) – bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis. Proc Inst Mech Eng H. 2009;223(6):697–711.
  • Mohammadi H, Mequanint K. Prosthetic aortic heart valves: modeling and design. J Med Eng Phys. 2011;33(2):131–147.
  • Mohammadi H. Nanocomposite biomaterial mimicking aortic heart valve leaflet mechanics. Proc Inst Mech Eng H. 2011;225(7):718–722.
  • Sharifikia D, Yafia MS, Fradet G, et al. The design and fabrication of a prosthetic aortic root made of hydrogel biomaterials. J Med Biol Eng. 2018;38(2):211–222.
  • Mohammadi H. 2009. Design and simulation of prosthetic heart valve prosthesis [PhD dissertation]. University of Western Ontario.
  • McGarry GJ, Prendergast PJ. A three-dimensional finite element model of an adherent eukaryotic cell. Eur Cell Mater. 2004;7:27–34.
  • Fabry B, Maksym G, Butler J, et al. Scaling the microrheology of living cells. Phys Rev Lett. 2001;87(14):1–4.
  • Fabry B, Maksym G, Butler J, et al. Time scale and other invariants of integrative mechanical behavior in living cells. Phys Rev. 2003;68:1–18.
  • Maksym GN, Fabry B, Butler JP, et al. Mechanical properties of cultured human airway smooth muscle cells from 0.05 to 0.4 Hz. J Appl Physiol (1985). 2000;89(4):1619–1632.
  • Sato M, Theret DP, Wheeler LT, et al. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J Biomech Eng. 1990;112(3):263–268.
  • Mijailovich SM, Kojic M, Zivkovic M, et al. A finite element model of cell deformation during magnetic bead twisting. J Appl Physiol (1985). 2002;93(4):1429–1436.
  • Cañadas P, Laurent VM, Oddou C, et al. A cellular tensegrity model to analyze the structural viscoelasticity of the cytoskeleton. J Theor Biol. 2002;218(2):155–173.
  • Pegoraro AF, Janmey P, Weitz DA. Mechanical properties of the cytoskeleton and cells. Cold Spring Harb Perspect Biol. 2017;9(11):a022038.
  • Goode D. New concepts in transcatheter mitral valve replacement [PhD dissertation]. University of British Columbia, Okanagan Campus; 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.