149
Views
2
CrossRef citations to date
0
Altmetric
Articles

Transitions and oscillations in a thermohaline deep ocean circulation model

Pages 321-344 | Received 13 Jun 2018, Accepted 26 Sep 2018, Published online: 10 Oct 2018

References

  • Arzel, O., Colin de Verdiere, A. and England, M.H., The role of oceanic heat transport and wind stress forcing to abrupt millenial-scale climate transitions. J. Climate. 2010, 23, 2233–2255 doi: 10.1175/2009JCLI3227.1
  • Arzel, O., Huck, T. and Colin de Verdiere, A., The different nature of interdecadal variability of the thermohaline circulation under mixed and flux boundary conditions. J. Phys. Oceanogr. 2006, 36, 1703–1718. doi: 10.1175/JPO2938.1
  • Beardsley, R.C. and Festa, J.F., A numerical model of convection driven by a surface stress and non-uniform horizontal heating. J. Phys. Oceanogr. 1972, 2, 444–455. doi: 10.1175/1520-0485(1972)002<0444:ANMOCD>2.0.CO;2
  • Colin de Verdière, A., A simple model of millennial oscillations of the thermohaline circulation. J. Phys. Oceanogr. 2007, 37, 1142–1155. doi:10.1175/JPO3056.1.
  • Colin de Verdière, A., Ben Jelloul, M. and Sévellec, F., Bifurcation structure of thermohaline millennial oscillations. J. Climate. 2006, 19, 5777–5795. doi:10.1175/JCLI3950.1.
  • Colin de Verdière, A. & Te Raa, L., Clim. Dyn. 2010, 35, 1237–1256. doi:10.1007/s00382-009-0675-8.
  • Delworth, T., Manabe, S. and Stouffer, R.J., Interdecadal variations of the thermohaline circulation in a coupled osean-atmosphere model, J. Climate. 1993, 6, 1993–2011. doi: 10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2
  • Gayen, B., Griffiths R.W., Hughes, G.O. and Saenz, J.A., Energetics of horizontal convection. J. Fluid Mech. 2013, 716, R10. doi:10.1017/jfm.2012.592.
  • Griffiths, R.W., Hughes, G.O. and Gayen, B., Horizontal convection dynamics: Insights from transient adjustment. J. Fluid Mech. 2013, 726, 559–595. doi: 10.1017/jfm.2013.244
  • Hansen D.V. and Rattray, M., Gravitational circulation in straits and estuaries. J. Mar. Res. 1965, 23, 104–122.
  • Hughes, G.O., Gayen, B. and Griffiths R.W., Available potential energy in Rayleigh–Benard convection. J. Fluid Mech. 2013, 729, R2, 1–10. doi: 10.1017/jfm.2013.353
  • Hughes, G.O. and Griffiths, R.W., A simple convective model of the global overturning circulation, including effects of entrainment into sinking regions. Ocean Model. 2006, 12, 46–79. doi: 10.1016/j.ocemod.2005.04.001
  • Hughes, G.O. and Griffiths, R.W., Horizontal convection. Ann. Rev. Fluid Mech. 2008, 40, 185–208. doi: 10.1146/annurev.fluid.40.111406.102148
  • Hughes, G.O., Griffiths, R.W., Mullarney, J.C. and Peterson, W.H., A theoretical model for horizontal convection at high Rayleigh number. J. Fluid Mech. 2007, 581, 251–276. doi: 10.1017/S0022112007005630
  • Loving, J.L. and Vallis, G.K., Mechanisms for climate variability during glacial and interglacial periods. Paleoceanography. 2005, 20, PA4024. doi:10.1029/2004PA00111.
  • Marchal, O., Jackson, C., Nilsson, J., Paul, A. and Stocker, T.F., Buoyancy-driven flow and nature of vertical mixing in a zonally averaged model. In Ocean Circulation: Mechanisms and Impacts, edited by A. Schmittner, J.C. Chiang and S.R. Hemming, 2007, Geophysical Monograph 173 (American Geophysical Union: Washington, D.C.). doi:10.1029/173GM05.
  • Marotzke, J., Ocean models in climate problems. In Ocean Processes in Climate Dynamics: Global and Mediterranean Examples, edited by P. Malanotte-Rizzole and A.R. Robinson, 1994, pp. 79–109 (Kluwer Academic, Springer, New York, NY).
  • Mullarney, J., Griffiths, R.W. and Hughes, G., Convection driven by differential heating at a horizontal boundary. J. Fluid Mech. 2004, 516, 181–209. doi: 10.1017/S0022112004000485
  • Paparella, F. and W. Young 2002. Horizontal convection is non-turbulent. J. Fluid Mech. 466, 205–214. doi:10.1017/S0022112002001313.
  • Passaggia, P., Scotti, A. and White, B., Transition and turbulence in horizontal convection: Linear stability analysis. J. Fluid Mech. 2017, 821, 31–58. doi:10.1017/jfm.2017.228.
  • Scotti, A. and White, B., Is horizontal convection really “non-turbulent”? Geophys. Res. Lett. 2011, 38, 1609, doi:10.1029/2011GL049701.
  • Sevellec, F. and Fedorov, A.V., Unstable AMOC during glacial intervals and millennial variability: The role of mean sea ice extent. Earth Planetary Sci. Lett. 2015, 429, 60–68. doi.org/10.1016/j.epsl.2015.07.022.
  • Sevellec, F., Thirerrt, H. and Mahdi, B.J., On the mechanism of centennial thermohaline oscillations. J. Marine Res. 2006, 64, 3, 355–392. doi:10.1357/002224006778189608.
  • Stommel, H., Thermohaline convection with two stable regimes of flow. Tellus. 1961, 3, 224−230.
  • Paul, A. and Schultz, M., Holocene climate variability on centennial-to-millennial time scales: 2. Internal and forced oscillations as possible causes. In Climate Development and History of the North Atlantic Realm, edited by G. Wefer, W. Berger, K.E. Behre and E. Jansen, pp. 55–73, 2002 (Springer-Verlag: Berlin, Heidelberg).
  • Report of, SCOR working group, Ocean-Atmosphere materials exchance (OAMEX): Report 44, Unesco, Paris, 1979, 41.
  • Rossby, H.T., On thermal convection driven by nonuniform heating from below: An experimental study. Deep-Sea Res. 1965, 12, 9–16.
  • Rossby, H.T., Numerical experiments with a fluid heated non-uniformly from below. Tellus A Dyn. Meteorol. Oceanogr. 1998, 242–257. doi:10.3402/tellusa.v50i2.14523.
  • Sakai, K. and Peltier, W.R., A multi-basin reduced model of the global thermohaline circulation: Internal and forced variability with paleoclimatological implications. J.Geophys.Res. 1996, 101, 535–562. doi: 10.1029/96JC00539
  • Siggers, J., Kerswell, R. and Balmforth, N., Bounds on horizontal convection. J. Fluid Mech. 2004, 517, 55–70. doi:10.1017/S0022112004000497.
  • te Raa, L., 2001. Convective oscillations in a laboratory model, GFD Fellows Report 2001. Available online at: http://gfd.whoi.edu/proceedings/2001/PDF/rep_teraa.pdf (accessed 1 October 2018).
  • Timmermann, A., Gildor, H., Schultz, M. and Tziperman E., Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses. J. Climate. 2003, 16, 2569–2585. doi: 10.1175/1520-0442(2003)016<2569:CRMCOT>2.0.CO;2
  • Tsitverblit, N., Bifurcation phenomena in confined thermosolutal convection with lateral heating: Commencement of the double-diffusive region. Phys. Fluids. 1995, 7, 718–736. doi: 10.1063/1.868776
  • Tsitverblit, N., Multiplicity of equilibrium states in laterally heated thermosolutal systems with equal diffusivity coefficients. Phys. Fluids. 1999, 11, 2516–2538. doi: 10.1063/1.870115
  • Tsitverblit, N., Mechanism of finite-amplitude double-component convection due to different boundary conditions. Phys. Lett. A. 2004, 329, 445–450. doi: 10.1016/j.physleta.2004.07.011
  • Tsitverblit, N., Double-component convection due to different boundary conditions in an infinite slot diversely oriented to the gravity. Ann. Phys. 2007, 322, 1727–1770. doi: 10.1016/j.aop.2006.10.001
  • Tsitverblit, N.A., The finger regime of double-diffusive convection with the equal diffusion coefficients and mixed boundary conditions. Double-Diffusive Processes 1996 Summer Study Program in Geophysical Fluid Dynamics. 1997a, Woods Hole Oceanographic Institution, 145.
  • Tsitverblit, N.A., On the nature of direct instabilities in double-component convection with different boundary conditions. Phys. Fluids. 1997b, 9, 2458–2460. doi: 10.1063/1.869364
  • Turner, J.S., Buoyancy Effects in Fluids, 367 pp, 1973. (New York: Cambridge University Press).
  • Wang, W. and Huang, R.X., An experimental study on thermal circulation driven by horizontal differential heating. J. Fluid Mech. 2005, 540, 49–73. doi: 10.1017/S002211200500577X
  • Weaver A.J. and Sarachik E.S., Evidence for decadal variability in an ocean general circulation model: An advective mechanism, Atmos.-Ocean. 1991, 29, 197–231. doi:10.1080/07055900.1991.9649403.
  • Weaver, A.J., Marotzke, J., Cummins, P.F. and Sarachik, E.S., Stability and variability of the thermohaline circulation. J. Phys. Oceanogr. 1993, 23, 39–60. doi:10.1175/1520-0485(1993)023.
  • Welander, P., A simple heat-salt oscillator, Dyn. Atmos. Oceans. 1982, 6, 233–242. doi:10.1016/0377-0265(82)90030-6.
  • Welander, P.A., New type of double-diffusive instability? Tellus A. 1989, 41, 66–72. doi:10.3402/tellusa.v41i1.11821.x.
  • Whitehead, J.A., Thermohaline ocean processes and models. Ann. Rev. Fluid Mech. 1995, 27, 89–114. doi: 10.1146/annurev.fl.27.010195.000513
  • Whitehead, J.A., Multiple states in doubly-driven flow. Phys. D. 1996, 97, 311–321. doi: 10.1016/0167-2789(96)00146-7
  • Whitehead, J.A., Multiple T-S states for estuaries, shelves and marginal seas. Estuaries. 1998, 21, 278–290. doi: 10.2307/1352475
  • Whitehead, J.A., Stratified convection with multiple states. Ocean Model. 2000, 2, 109–121. doi: 10.1016/S1463-5003(00)00012-3
  • Whitehead, J.A., Abrupt transitions and hysteresis in thermohaline laboratory models. J. Phys. Oceanogr. 2009. 39, 1231–1243. doi: 10.1175/2008JPO4087.1
  • Whitehead, J.A., Convection driven by temperature and composition flux with the same diffusivity. Geophys. Astrophys. Fluid Dyn. 2017, 111, 229–248. doi:10.1080/03091929.2017.1333608.
  • Whitehead, J.A., Cotel, A., Hart, S., Lithgow-Bertelloni, C. and Newsome, W., Numerical calculations of two-dimensional large Prandtl number convection in a box. J. Fluid Mech. 2013, 729, 584–602. doi: 10.1017/jfm.2013.330
  • Whitehead, J.A., te Raa, L., Tozuka, T., Keller, J.K. and Bradley, K., Laboratory observations and simple models of slow oscillations in cooled salt-stratified bodies. Tellus A. 2005, 57A, 778–809. doi:10.1111/j.1600-0870.2005.00150.
  • Winters, K.B. and Young, W.R., Available potential energy and buoyancy variance in horizontal convection, J. Fluid Mech. 2009, 629, 221–230. doi: 10.1017/S0022112009006685
  • Winton M. and Sarachek, E.S., Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation. J. Phys. Oceanogr. 1993, 23, 1389–1410. doi: 10.1175/1520-0485(1993)023<1389:TOIBSS>2.0.CO;2
  • Zhao, F.Y., Liu, D. and Tang, G.F., Multiple steady flows in confined gaseous double diffusion with discrete thermosolutal sources. Phys. Fluids. 2007, 19, 107103. doi: 10.1063/1.2770518

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.