118
Views
17
CrossRef citations to date
0
Altmetric
Articles

Chiral fermion asymmetry in high-energy plasma simulations

, &
Pages 106-129 | Received 20 Aug 2018, Accepted 04 Mar 2019, Published online: 29 Mar 2019

References

  • Abelev, B., Adam, J., Adamová, D., Adare, A.M., Aggarwal, M.M., Aglieri Rinella, G., Agocs, A.G., Agostinelli, A., Aguilar Salazar, S., Ahammed, Z. and et al., Charge separation relative to the reaction plane in Pb-Pb collisions at sNN=2.76TeV. Phys. Rev. Lett. 2013, 110, 012301.
  • Alekseev, A.Y., Cheianov, V.V. and Fröhlich, J., Universality of transport properties in equilibrium, Goldstone theorem and chiral anomaly. Phys. Rev. Lett. 1998, 81, 3503–3506. doi: 10.1103/PhysRevLett.81.3503
  • Artsimovich, L.A. and Sagdeev, R.Z., Plasma Physics for Physicists, 1985 (New York: Benjamin).
  • Boyarsky, A., Fröhlich, J. and Ruchayskiy, O., Self-consistent evolution of magnetic fields and chiral asymmetry in the early universe. Phys. Rev. Lett. 2012, 108, 031301. doi: 10.1103/PhysRevLett.108.031301
  • Boyarsky, A., Fröhlich, J. and Ruchayskiy, O., Magnetohydrodynamics of chiral relativistic fluids. Phys. Rev. D 2015, 92, 043004. doi: 10.1103/PhysRevD.92.043004
  • Brandenburg, A., Schober, J., Rogachevskii, I., Kahniashvili, T., Boyarsky, A., Fröhlich, J., Ruchayskiy, O. and Kleeorin, N., The turbulent chiral-magnetic cascade in the early universe. Astrophys. J. Lett. 2017, 845, L21. doi: 10.3847/2041-8213/aa855d
  • Del Zanna, L. and Bucciantini, N., Covariant and 3 + 1 equations for dynamo-chiral general relativistic magnetohydrodynamics. Monthly Notices Roy. Astron. Soc. 2018, 479, 657–666.
  • Dvornikov, M.S., Relaxation of the chiral chemical potential in the dense matter of a neutron star. Russian Phys. J. 2017, 59, 1881–1890. doi: 10.1007/s11182-017-0991-0
  • Dvornikov, M. and Semikoz, V.B., Energy source for the magnetic field growth in magnetars driven by the electron-nucleon interaction. Phys. Rev. D 2015, 92, 083007. doi: 10.1103/PhysRevD.92.083007
  • Dvornikov, M. and Semikoz, V.B., Influence of the turbulent motion on the chiral magnetic effect in the early universe. Phys. Rev. D 2017, 95, 043538. doi: 10.1103/PhysRevD.95.043538
  • Fröhlich, J. and Pedrini, B.. New applications of the chiral anomaly, in Mathematical Physics 2000, edited by A.S. Fokas, A. Grigoryan, T. Kibble and B. Zegarlinski, International Conference on Mathematical Physics 2000, Imperial college (London), 2000.
  • Fukushima, K., Kharzeev, D.E. and Warringa, H.J., The chiral magnetic effect. Phys. Rev. 2008, D78, 074033.
  • Gailitis, A., Lielausis, O., Dement'ev, S., Platacis, E., Cifersons, A., Gerbeth, G., Gundrum, T., Stefani, F., Christen, M., Hänel, H. and Will, G., Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility. Phys. Rev. Lett. 2000, 84, 4365–4368. doi: 10.1103/PhysRevLett.84.4365
  • Gorbar, E.V., Shovkovy, I.A., Vilchinskii, S., Rudenok, I., Boyarsky, A. and Ruchayskiy, O., Anomalous Maxwell equations for inhomogeneous chiral plasma. Phys. Rev. D 2016, 93, 105028. doi: 10.1103/PhysRevD.93.105028
  • Grabowska, D., Kaplan, D.B. and Reddy, S., Role of the electron mass in damping chiral plasma instability in Supernovae and neutron stars. Phys. Rev. D 2015, 91, 085035. doi: 10.1103/PhysRevD.91.085035
  • Joyce, M. and Shaposhnikov, M.E., Primordial magnetic fields, right electrons, and the Abelian anomaly. Phys. Rev. Lett. 1997, 79, 1193–1196. doi: 10.1103/PhysRevLett.79.1193
  • Kharzeev, D.E., The chiral magnetic effect and anomaly-induced transport. Prog. Part. Nucl. Phys. 2014, 75, 133–151. doi: 10.1016/j.ppnp.2014.01.002
  • Kharzeev, D.E., Landsteiner, K., Schmitt, A. and Yee, H.U., Strongly interacting matter in magnetic fields: an overview. Lect. Notes Phys. 2013, 871, 1–11. doi: 10.1007/978-3-642-37305-3_1
  • Kharzeev, D.E., Liao, J., Voloshin, S.A. and Wang, G., Chiral magnetic and vortical effects in high-energy nuclear collisions – A status report. Prog. Part. Nucl. Phys. 2016, 88, 1–28. doi: 10.1016/j.ppnp.2016.01.001
  • Kharzeev, D.E. and Yee, H.U., Chiral magnetic wave. Phys. Rev. D 2011, 83, 085007. doi: 10.1103/PhysRevD.83.085007
  • Krause, F. and Rädler, K.H., Mean-Field Magnetohydrodynamics and Dynamo Theory, 1980 (Oxford: Pergamon).
  • Masada, Y., Kotake, K., Takiwaki, T. and Yamamoto, N., Chiral magnetohydrodynamic turbulence in core-collapse supernovae. Phys. Rev. D 2018, 98, 083018. doi: 10.1103/PhysRevD.98.083018
  • Miransky, V.A. and Shovkovy, I.A., Quantum field theory in a magnetic field: from quantum chromodynamics to graphene and Dirac semimetals. Phys. Rept. 2015, 576, 1–209. doi: 10.1016/j.physrep.2015.02.003
  • Moffatt, H.K., Magnetic Field Generation in Electrically Conducting Fluids, 1978 (Cambridge, England: Cambridge University Press).
  • Monchaux, R., Berhanu, M., Bourgoin, M., Moulin, M., Odier, P., Pinton, J.F., Volk, R., Fauve, S., Mordant, N., Pétrélis, F., Chiffaudel, A., Daviaud, F., Dubrulle, B., Gasquet, C., Marié, L. and Ravelet, F., Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Phys. Rev. Lett. 2007, 98, 044502. doi: 10.1103/PhysRevLett.98.044502
  • Nielsen, H.B. and Ninomiya, M., The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 1983, 130, 389–396. doi: 10.1016/0370-2693(83)91529-0
  • Rogachevskii, I., Ruchayskiy, O., Boyarsky, A., Fröhlich, J., Kleeorin, N., Brandenburg, A. and Schober, J., Laminar and turbulent dynamos in chiral magnetohydrodynamics-I: Theory. Astrophys. J. 2017, 846, 153. doi: 10.3847/1538-4357/aa886b
  • Schober, J., Brandenburg, A., Rogachevskii, I. and Kleeorin, N., Energetics of turbulence generated by chiral MHD dynamos. Geophys. Astrophys. Fluid Dyn. 2018a, (arXiv:1803.06350).
  • Schober, J., Rogachevskii, I., Brandenburg, A., Boyarsky, A., Fröhlich, J., Ruchayskiy, O. and Kleeorin, N., Laminar and turbulent dynamos in chiral magnetohydrodynamics. II. Simulations. Astrophys. J. 2018b, 858, 124. doi: 10.3847/1538-4357/aaba75
  • Semikoz, V.B. and Sokoloff, D., Magnetic helicity and cosmological magnetic field. Astron. Astrophys. 2005, 433, L53–L56. doi: 10.1051/0004-6361:200500094
  • Sigl, G. and Leite, N., Chiral magnetic effect in protoneutron stars and magnetic field spectral evolution. JCAP 2016, 1, 025. doi: 10.1088/1475-7516/2016/01/025
  • Son, D.T. and Surowka, P., Hydrodynamics with Triangle Anomalies. Phys. Rev. Lett. 2009, 103, 191601.
  • Stieglitz, R. and Müller, U., Experimental demonstration of a homogeneous two-scale dynamo. Phys. Fluids 2001, 13, 561–564. doi: 10.1063/1.1331315
  • Tashiro, H., Vachaspati, T. and Vilenkin, A., Chiral effects and cosmic magnetic fields. Phys. Rev. D 2012, 86, 105033. doi: 10.1103/PhysRevD.86.105033
  • Vilenkin, A., Equilibrium parity violating current in a magnetic field. Phys. Rev. D 1980, 22, 3080–3084. doi: 10.1103/PhysRevD.22.3080
  • Wang, G., Search for chiral magnetic effects in high-energy nuclear collisions. Nucl. Phys. A 2013, 904–905, 248c–255c. The Quark Matter 2012. doi: 10.1016/j.nuclphysa.2013.01.069
  • Yamamoto, N., Scaling laws in chiral hydrodynamic turbulence. Phys. Rev. D. 2016, 93, 125016.
  • Zeldovich, Y.B., Ruzmaikin, A.A. and Sokoloff, D.D., Magnetic Fields in Astrophysics, 1983 (New York: Gordon and Breach).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.